22 resultados para DOPED CRYSTALLINE SILICON
Resumo:
A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS) determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1). The preconcentration factor is 100 for (200 mL) solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
The element silicon (Si) is not considered an essential nutrient for plant function. Nevertheless, Si is absorbed from soil in large amounts that are several fold higher than those of other essential macronutrients in certain plant species. Its beneficial effects have been reported in various situations, especially under biotic and abiotic stress conditions. The most significant effect of Si on plants, besides improving their fitness in nature and increasing agricultural productivity, is the restriction of parasitism. There has been a considerable amount of research showing the positive effect of Si in controlling diseases in important crops. Rice (Oryza sativa), in particular, is affected by the presence of Si, with diseases such as blast, brown spot and sheath blight becoming more severe on rice plants grown in Si-depleted soils. The hypothesis underlying the control of some diseases in both mono- and di-cots by Si has been confined to that of a mechanical barrier resulting from its polymerization in planta. However, some studies show that Si-mediated resistance against pathogens is associated with the accumulation of phenolics and phytoalexins as well as with the activation of some PR-genes. These findings strongly suggest that Si plays an active role in the resistance of some plants to diseases rather than forming a physical barrier that impedes penetration by fungal pathogens.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.
Resumo:
This paper discusses the effect of tool wear on surface finish in single-point diamond turning of single crystal silicon. The morphology and topography of the machined surface clearly show the type of cutting edge wear reproduced onto the cutting grooves. Scanning electron microscopy is used in order to correlate the cutting edge damage and microtopography features observed through atomic force microscopy. The possible wear mechanisms affecting tool performance and surface generation during cutting are also discussed. The zero degree rake angle single point diamond tool presented small nicks on the cutting edge. The negative rake angle tools presented more a type of crater wear on the rake face. No wear was detected on flank face of the diamond tools.
Resumo:
Floristic composition and structure of vegetation were studied in two rocky outcrop areas in the semi-arid region of northeastern Brazil. From April 2007 to September 2008, 18 monthly field trips were carried out. Vascular plants were randomly collected throughout the outcrop areas. For structural analysis, 30 plots of 1 × 1 m were set in the vegetation islands. The checklist presented combines 211 species (69 families and 168 genera), although only 56 species were collected in the plots. Fabaceae (18 spp.; 8.5%), Asteraceae (17 spp.; 8%), Orchidaceae (13 spp.; 6.1%), Euphorbiaceae (13 spp.; 6.1%), Bromeliaceae (10 spp.; 4.7%), and Poaceae (eight spp.; 3.8%) are the richest families. Overall, 1,792 shrub and herbaceous specimens were counted in the plots. The Shannon-Wiener (H) diversity index values were 2.572 and 2.547 nats individual-1. The species that presented the highest absolute abundance values (number of plants) had low frequencies in the plots and vice-versa. The biological spectrum had a high proportion of phanerophytes and therophytes, followed by cryptophytes, chamaephytes, and hemicryptophytes. The studied flora shares floristic components similar to other rocky outcrop areas of the semi-arid region in northeastern Brazil, including in relation to dominant groups in the vegetation structure.