30 resultados para DNA-organic hybrid materials, polymer colloidsm
Resumo:
The present work reviews recent advances in the preparation of new reversed phase packing materials such as sterically protected, bidentate, hybrid organic-inorganic and monolithic phases and phases containing embedded polar groups. The bonding chemistry involved in the preparation of these phases as well as their advantages over conventional C8 and C18 reversed phases are discussed. Understanding the reasons behind the development of these newer column packings helps analysts select the best stationary phase for a given application.
Resumo:
The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.
Resumo:
Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.
Resumo:
Because of their practical applications, porous materials attract the attention of undergraduate students in a way that can be used to teach techniques and concepts in various chemistry disciplines. Porous materials are studied in various chemistry disciplines, including inorganic, organic, and physical chemistry. In this work, the syntheses of a microporous material and a mesoporous material are presented. The porosity of the synthesized materials is characterized by X-ray diffraction analysis. We show that this technique can be used to determine the pore dimensions of the synthesized materials.
Resumo:
Large scale preparation of hybrid electrical actuators represents an important step for the production of low cost devices. Interfacial polymerization of polypyrrole in the presence of multi-walled carbon nanotubes represents a simple technique in which strong interaction between components is established, providing composite materials with potential applications as actuators due to the synergistic interaction between the individual components, i.e., fast response of carbon nanotubes, high strain of polypyrrole, and diversity in the available geometry of resulting samples.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
Objective To compare the diagnostic accuracy of the classic Meisels cytologic criteria and the Schneider secondary criteria relative to the hybrid capture method for diagnosing HPV infection. Methods This was a retrospective study performed at a public university hospital. A total of 41 patients with a cytologic diagnosis of HPV infection and 40 HPV-negative patients were selected for review of the cervical-vaginal smears seeking to classical and secondary criteria. A single pathologist reviewed the slides in search of the criteria. The classical and secondary cytologic criteria were compared with the hybrid capture for diagnosing HPV infection. Bartleti test was applied for the age analysis, and Fisher's exact test was used to compare proportions. The tests were considered significant when the probability of rejecting the null hypothesis was less than 5% (p < 0.05). Results The Meisels criteria were less sensitive (34.0%) than the secondary Schneider criteria (57.5%) when compared with the hybrid capture (p < 0.0001), although the specificity of the former criteria was non-significantly higher (91.2% and 67.7%, respectively). In cases of moderate or intense inflammation, the sensitivity and specificity of the Schneider criteria were decreased, 33.3% and 50.0% respectively (p = 0.0115). Conclusions Compared with hybrid capture for diagnosis of HPV infection, the sensitivity of the secondary Schneider criteria was higher than the classical Meisels criteria.Moderate or intense inflammation reduces the sensitivity and specificity of the secondary Schneider criteria for diagnosing HPV infection using the hybrid capture as the gold standard.
Resumo:
Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.
Resumo:
Proso millet (Panicum miliaceum L.) is a serious weed in North America. A high number of wild proso millet biotypes are known but the genetic basis of its phenotypic variation is poorly understood. In the present study, a non-radioactive silver staining method for PCR-Amplified Fragment Length Polymorphism (AFLP) was evaluated for studying genetic polymorphism in American proso millet biotypes. Twelve biotypes and eight primer combinations with two/three and three/three selective nucleotides were used. Pair of primers with two/three selective nucleotides produced the highest number of amplified DNA fragments, while pair of primers with three/three selective nucleotides were more effective for revealing more polymorphic DNA fragments. The two better primer combinations were EcoR-AAC/Mse-CTT and EcoR-ACT/Mse-CAA with seven and eleven polymorphic DNA fragments, respectively. In a total of 450 amplified fragments, at least 339 appeared well separated in a silver stained acrylamide gel and 39 polymorphic DNA bands were scored. The level of polymorphic DNA (11.5%) using only eight pairs of primers were effective for grouping proso millet biotypes in two clusters but insufficient for separating hybrid biotypes from wild and crop. Nevertheless, the present result indicates that silver stained AFLP markers could be a cheap and important tool for studying genetic relationships in proso millet.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
RAPD-PCR molecular markers were used to identify common bean and soybean hybrid plants derived from crosses between closely related progenitors, with no apparent phenotypic differences. Primers OP-F12 and OP-0O3 were used to identify true hybrids derived from crosses between common bean cultivars Rudá (A 285) and AN 910408, and soybean cultivars Cristalina and Bossier, respectively. Each primer generated one polymorphic DNA band which was present in the male progenitor and absent in the female progenitor. As RAPD bands are normally inherited as dominant characters, the presence of these bands in the F1 plants confirmed their status.
Resumo:
We developed an efficient method to prepare a hybrid inorganic-organic composite based on polyvinyl alcohol (PVA) and polysiloxane using the sol-gel disc technique. Antigen obtained from Yersinia pestis was covalently immobilized onto these discs with glutaraldehyde and used as solid phase in ELISA for antibody detection in serum of rabbits experimentally immunized with plague. Using 1.25 µg antigen per disc, a peroxidase conjugate dilution of 1:4,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. These values are similar to those used for PVA-glutaraldehyde discs, plasticized filter paper discs and the polyaniline-Dacron composite discs. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates, with the amount of antigen being one fourth that employed in conventional PVC plates (5 µg/well). In addition to the performance of the polysiloxane/PVA-glutaraldehyde disc as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
The molecular basis for RHD pseudogene or RHDpsi is a 37-bp insertion in exon 4 of RHD. This insertion, found in two-thirds of D-negative Africans, appears to introduce a stop codon at position 210. The hybrid RHD-CE-Ds, where the 3' end of exon 3 and exons 4 to 8 are derived from RHCE, is associated with the VS+V- phenotype, and leads to a D-negative phenotype in people of African origin. We determined whether Brazilian blood donors of heterogeneous ethnic origin had RHDpsi and RHD-CE-Ds. DNA from 206 blood donors were tested for RHDpsi by a multiplex PCR that detects RHD, RHDpsi and the C and c alleles of RHCE. The RHD genotype was determined by comparison of size of amplified products associated with the RHD gene in both intron 4 and exon 10/3'-UTR. VS was determined by amplification of exon 5 of RHCE, and sequencing of PCR products was used to analyze C733G (Leu245Val). Twenty-two (11%) of the 206 D-negative Brazilians studied had the RHDpsi, 5 (2%) had the RHD-CE-Ds hybrid gene associated with the VS+V- phenotype, and 179 (87%) entirely lacked RHD. As expected, RHD was deleted in all the 50 individuals of Caucasian descent. Among the 156 individuals of African descent, 22 (14%) had inactive RHD and 3% had the RHD-CE-Ds hybrid gene. These data confirm that the inclusion of two different multiplex PCR for RHD is essential to test the D-negative Brazilian population in order to avoid false-positive typing of polytransfused patients and fetuses.
Resumo:
The aim of this study was to determine the influence of process parameters and Passion Fruit Fiber (PFF) addition on the Glycemic Index (GI) of an extruded breakfast cereal. A 2³ Central Composite Rotational Design (CCRD) was used, with the following independent variables: raw material moisture content (18-28%), 2nd and 3rd barrel zone temperatures (120-160 ºC), and PFF (0-30%). Raw materials (organic corn flour and organic PFF) were characterized as to their proximate composition, particle size, and in vitro GI. The extrudates were characterized as to their in vitro GI. The Response Surface Methodology (RSM) and Principal Component Analysis (PCA) were used to analyze the results. Corn flour and PFF presented 8.55 and 7.63% protein, 2.61 and 0.60% fat, 0.52 and 6.17% ash, 78.77 and 78.86% carbohydrates (3 and 64% total dietary fiber), respectively. The corn flour particle size distribution was homogeneous, while PFF presented a heterogeneous particle size distribution. Corn flour and PFF presented values of GI of 48 and 45, respectively. When using RSM, no effect of the variables was observed in the GI of the extrudates (average value of 48.41), but PCA showed that the GI tended to be lower when processing at lower temperatures (<128 ºC) and at higher temperatures (>158 ºC). When compared to white bread, the extrudates showed a reduction of the GI of up to 50%, and could be considered an interesting alternative in weight and glycemia control diets.
Resumo:
One of the main features that confer high quality to the seed is its genetic purity, in which one of the major causes of contamination is the self-pollination of the female parent. Up to date, there is no accurate and fast methods for detecting such contamination. Thus, this work was carried out to certify the genetic purity in seeds of hybrid maize using different biochemical and DNA-based markers. Two single-cross hybrids and their parental lines derived from the maize breeding program at UFLA were evaluated by isoenzymatic pattern of alcohol dehydrogenase (ADH), esterase (EST), acid phosphatase (ACP), glutamate-oxaloacetate transaminase (GOT), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphoglucomate dehydrogenase (PGDH), catalase (CAT) and ß-glucosidade (ßGLU) and by microsatellites markers. The enzymatic systems that were able to distinguish the hybrids from their parental line were the catalase, the isocitrate dehydrogenase and the esterase. The esterase showed a Mendelian segregation pattern for UFLA 8/3 hybrid, that enables a safer genetic purity certificate. Microsatellites were able to differentiate the hybrid lines and the respective parental lines. Moreover, this technique was fast, precise and without environment effects. For microsatellites, the amplification pattern was identical when young leaves or seeds were used as DNA source. The possibility of using seeds as DNA source would accelerate and facilitate the role process of the genetic purity analysis.