57 resultados para Crista neural


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conhecimento do valor da erosividade da chuva (R) de determinada localidade é fundamental para a estimativa das perdas de solo feitas a partir da Equação Universal de Perdas de Solo, sendo, portanto, de grande importância no planejamento conservacionista. A fim de obter estimativas do valor de R para localidades onde este é desconhecido, desenvolveu-se uma rede neural artificial (RNA) e analisou-se a acurácia desta com o método de interpolação "Inverso de uma Potência da Distância" (ID). Comparando a RNA desenvolvida com o método de interpolação ID, verificou-se que a primeira apresentou menor erro relativo médio na estimativa de R e melhor índice de confiança, classificado como "Ótimo", podendo, portanto, ser utilizada no planejamento de uso, manejo e conservação do solo no Estado de São Paulo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A corticeira-do-banhado é uma árvore nativa com uso ornamental no paisagismo urbano e possui potencial de utilização em áreas desprotegidas e degradadas, devido a sua rusticidade. Entretanto, tendo em vista a dificuldade de obtenção de sementes, pela baixa produção e qualidade destas com a conseqüente desuniformidade da germinação, torna-se necessário aprofundar o estudo de outras formas de propagação dessa espécie. Desse modo, conduziu-se este trabalho na Faculdade de Agronomia e Medicina Veterinária da Universidade de Passo Fundo, com o objetivo de estudar a formação de mudas de Erythrina crista-galli L. pela técnica da estaquia. Em quatro experimentos foram testadas doses do fitorregulador ácido indolbutírico (AIB), em diferentes tipos de estacas (lenhosas, semilenhosas, herbáceas e foliares) e substratos. Os resultados indicaram que mini-estacas herbáceas, coletadas de plantas jovens, com menos de 1 ano de idade, são as mais indicadas (75% a 100% de enraizamento), e o uso do AIB diminuiu a mortalidade, ao favorecer o processo do enraizamento. Em razão do ataque de insetos (brocas) às plantas no seu hábitat, recomenda-se a técnica de jardim clonal, com a formação de matrizeiros no viveiro, fornecendo material juvenil e sadio em maior escala para a propagação dessa espécie por miniestacas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reconstrução do processo alveolar em pacientes portadores de fissuras labiopalatais (FLP) é fundamental para erupção de dentes permanentes e para o restabelecimento estético através de implantes osteointegrados. Assim, considerado o alto grau de reabsorção do enxerto de osso autógeno puro e triturado, optou-se no Centro de Atendimento Integral ao Fissurado Labiopalatino, Curitiba, Paraná (1997 a 1999), pelo estabelecimento de dois grupos de 15 pacientes. No primeiro, foi utilizada crista ilíaca triturada e no outro combinada com hidroxiapatita biorreabsorvível. Ao fim de seis meses, os resultados cirúrgicos foram avaliados através de radiografia periapical digital, determinando quatro linhas limites para a reconstrução óssea. A primeira linha foi traçada na região cervical do dente adjacente à fissura que apresentava menor distorção. As outras linhas foram traçadas paralelamente à linha 1, distando 3mm entre cada uma delas. O espaço entre as linhas 1 e 2 foi denominado de A, entre 2 e 3 de B e 3 e 4 de C. Para critérios de avaliação, quando o enxerto permaneceu no espaço A, foi considerado de sucesso, em contraposição aos espaços B e C, quando foram denominados de procedimentos malsucedidos. Como resultados finais, o espaço A foi constatado em 46,7% dos pacientes submetidos ao procedimento controle com crista ilíaca e 80% para o grupo experimental, quando o enxerto ósseo foi empregado conjuntamente com o material aloplástico (hidroxiapatita).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Determinar a validade do enxerto autólogo de crista ilíaca não vascularizado no tratamento cirúrgico do ameloblastoma de mandíbula. MÉTODO: Nos Serviços de Cirurgia de Cabeça e Pescoço e Semiologia Bucal do Complexo Hospitalar Heliópolis, de 1980 a 2000, foram tratados 31 pacientes com ameloblastoma de mandíbula, dos quais sete receberam enxerto de crista ilíaca autólogo, fixos com placa de titânio do sistema A-0 (quatro casos) e aço inox (três casos), sendo portadores da variedade folicular (seis casos) e plexiforme (um caso). RESULTADOS: Nesta análise, foi utilizado o Teste de Hipótese para a média populacional com a variança desconhecida, houve exposição da placa em três casos (40%) quando a neoplasia ultrapassava a linha média e em quatro casos (60%) não incidiu nenhuma complicação. CONCLUSÕES: Apesar da incidência de exposição de placa, o método é indicado na reconstrução da mandíbula de pacientes com ameloblastoma.