43 resultados para Complex Disease
Resumo:
Background:Sudden death is the leading cause of death in Chagas disease (CD), even in patients with preserved ejection fraction (EF), suggesting that destabilizing factors of the arrhythmogenic substrate (autonomic modulation) contribute to its occurrence.Objective:To determine baroreflex sensitivity (BRS) in patients with undetermined CD (GI), arrhythmogenic CD with nonsustained ventricular tachycardia (NSVT) (GII) and CD with spontaneous sustained ventricular tachycardia (STV) (GIII), to evaluate its association with the occurrence and complexity of arrhythmias.Method:Forty-two patients with CD underwent ECG and continuous and noninvasive BP monitoring (TASK force monitor). The following were determined: BRS (phenylephrine method); heart rate variability (HRV) on 24-h Holter; and EF (echocardiogram).Results:GIII had lower BRS (6.09 ms/mm Hg) as compared to GII (11.84) and GI (15.23). The difference was significant between GI and GIII (p = 0.01). Correlating BRS with the density of ventricular extrasystoles (VE), low VE density (<10/h) was associated with preserved BRS. Only 59% of the patients with high VE density (> 10/h) had preserved BRS (p = 0.003). Patients with depressed BRS had higher VE density (p = 0.01), regardless of the EF. The BRS was the only variable related to the occurrence of SVT (p = 0.028).Conclusion:The BRS is preserved in undetermined CD. The BRS impairment increases as disease progresses, being more severe in patients with more complex ventricular arrhythmias. The degree of autonomic dysfunction did not correlate with EF, but with the density and complexity of ventricular arrhythmias.
Resumo:
Background:The QRS-T angle correlates with prognosis in patients with heart failure and coronary artery disease, reflected by an increase in mortality proportional to an increase in the difference between the axes of the QRS complex and T wave in the frontal plane. The value of this correlation in patients with Chagas heart disease is currently unknown.Objective:Determine the correlation of the QRS-T angle and the risk of induction of ventricular tachycardia / ventricular fibrillation (VT / VF) during electrophysiological study (EPS) in patients with Chagas disease.Methods:Case-control study at a tertiary center. Patients without induction of VT / VF on EPS were used as controls. The QRS-T angle was categorized as normal (0-105º), borderline (105-135º) or abnormal (135-180º). Differences between groups for continuous variables were analyzed with the t test or Mann-Whitney test, and for categorical variables with Fisher's exact test. P values < 0.05 were considered significant.Results:Of 116 patients undergoing EPS, 37.9% were excluded due to incomplete information / inactive records or due to the impossibility to correctly calculate the QRS-T angle (presence of left bundle branch block and atrial fibrillation). Of 72 patients included in the study, 31 induced VT / VF on EPS. Of these, the QRS-T angle was normal in 41.9%, borderline in 12.9% and abnormal in 45.2%. Among patients without induction of VT / VF on EPS, the QRS-T angle was normal in 63.4%, borderline in 14.6% and abnormal in 17.1% (p = 0.04). When compared with patients with normal QRS-T angle, those with abnormal angle had a fourfold higher risk of inducing ventricular tachycardia / ventricular fibrillation on EPS [odds ratio (OR) 4; confidence interval (CI) 1.298-12.325; p = 0.028]. After adjustment for other variables such as age, ejection fraction (EF) and QRS size, there was a trend for the abnormal QRS-T angle to identify patients with increased risk of inducing VT / VF during EPS (OR 3.95; CI 0.99-15.82; p = 0.052). The EF also emerged as a predictor of induction of VT / VF: for each point increase in EF, there was a 4% reduction in the rate of sustained ventricular arrhythmia on EPS.Conclusions:Changes in the QRS-T angle and decreases in EF were associated with an increased risk of induction of VT / VF on EPS.
Resumo:
Immunoblot analysis was used to investigate antigenic differences among clinical isolates of Leishmania amazonensis and their role in the etiology of the diseases. Western blots of promastigote homogenates were analyzed with either monoclonal antibodies (MAbs) specific for the L. mexicana complex (M-4, M-6, M-9 and M-11) or polyclonal sera from L. amazonensis infected patients with the various forms of clinical disease. In the case of the MAbs, no significant variation was observed among the strains of L. amazonensis, isolated from cases of cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), visceral leishmaniasis (VL) or post kala-azar dermal leishmaniasis (PKDL), in either the relative morbility (Mr) or the quantitative amount (intensity) of the antigenic determinats. In the case of the sera of the infected patients, the patterns of antigenic reactivity of these strains revealed that, despite showing the presence of shared antigens, differences were observed between some of the antigenic components of the various isolates of L. amazonensis that were recognized by a single serum. Differences were also demonstrated between the antigenic determinants of a single isolate of L. amazonensis that were recognized by the different patient's sera. No apparent association was consistently found, however, between the Mr components identified in these isolates and clinical form of the disease or the geographical area of isolation. In addition, the spectrum of antigens recognized by the sera from patients with the same clinical form were not identical; although in some instances, similar Mr antigens were shared. These results indicate that isolates of L. amazonensis are not antigenically identical (homogeneous) and that the immune responses (antibodies) observed among infected patients are heterogeneous.
Resumo:
The sand fly Lutzomyia longipalpis sensu latu has been identified as the principal vector of American visceral leishmaniasis, a potentially fatal disease that primarily affects children in several countries of South and Central America. Over the past several years increases have occurred both in the number of reported cases and the population at risk: approximately 1.6 million people reside in highly endemic areas with 16,000 cases reported annually. Several studies have attempted to relate the epidemiology of this disease to variability in Lu. longipalpis that is now recognized to be a complex of at least three sibling species. Morphological variation in this species was first noted by Mangabeira (1969). Since then physiological and biochemical differences have been reported by several investigators. Recent reports in Costa Rica of the presence of Lu. longipalpis in a focus of cutaneous leishmaniasis caused by Leishmania chagasi may be an additional indication of variability in this species. While existing evidence indicates that the morphospecies Lu. longipalpis may represent a complex of sibling species, genetic, epidemiological and ecological distinctions have not been fully resolved. Thus, delimitation of systematic boundaries within the complex and corresponding to geographic distributions and roles in transmission remain unresolved. The purpose of this review is to summarize from the literature observations of polymorphism in this morphospecies and consider what significance this reported variability may have to the epidemiology of visceral leishmaniasis.
Resumo:
Chagas disease is a complex public health problem that has been underestimated in Ecuador. Here we review the relevant published information, and present unpublished and new data that help to understand the current Chagas disease epidemiological situation and its evolution in the country. Three main characteristics have been identified: (i) persistence of Trypanosoma cruzi transmission in already known foci; (ii) a marked endemicity in some urban areas of Guayaquil; and (iii) the transformation of new Amazon foci into truly endemic areas. The situation in other suspect areas remains uncertain. Five Triatominae species have been implicated in the transmission of T. cruzi to people in Ecuador (Triatoma dimidiata, Rhodnius ecuadoriensis, R. pictipes, R. robustus and Panstrongylus geniculatus), but some others may also play a role in some areas (P. rufotuberculatus, P. howardi, T. carrioni and P. chinai). Other Triatominae reported seem to have little or no epidemiological relevance (T. venosa, T. dispar, Eratyrus mucronatus, E. cuspidatus, P. lignarius and Cavernicola pilosa). High frequency of acute cases and severe chronic disease has been observed. Although cardiomyopathy is more frequent, serious digestive disease is also present. It is estimated that around 120,000-200,000 people may be infected. 2.2 to 3.8 million people are estimated to live under transmission risk conditions.
Resumo:
Human Chagas disease is a purely accidental occurrence. As humans came into contact with the natural foci of infection might then have become infected as a single addition to the already extensive host range of Trypanosoma cruzi that includes other primates. Thus began a process of adaptation and domiciliation to human habitations through which the vectors had direct access to abundant food as well as protection from climatic changes and predators. Our work deals with the extraction and specific amplification by polymerase chain reaction of T. cruzi DNA obtained from mummified human tissues and the positive diagnosis of Chagas disease in a series of 4,000-year-old Pre-Hispanic human mummies from the northern coast of Chile. The area has been inhabited at least for 7,000 years, first by hunters, fishers and gatherers, and then gradually by more permanent settlements. The studied specimens belonged to the Chinchorro culture, a people inhabiting the area now occupied by the modern city of Arica. These were essentially fishers with a complex religious ideology, which accounts for the preservation of their dead in the way of mummified bodies, further enhanced by the extremely dry conditions of the desert. Chinchorro mummies are, perhaps, the oldest preserved bodies known to date.
Resumo:
An epidemiological study was carried out in the northern Mexican state, Nayarit. Fourteen patients with possible cutaneous leishmaniasis skin lesions gave positive Montenegro skin tests. Biopsies were taken from the skin ulcer and analyzed by polymerase chain reaction (PCR) with specific primers for the Leishmania mexicana complex; however all biopsies were not amplified. PCR carried out with specific primers for the L. braziliensis complex resulted in the amplification of all patient DNA. DNA from 12 out of 14 biopsies gave positive amplification with primers species specific for L. (Viannia) braziliensis and hybridized with a species specific L. (V.) braziliensis probe. These results demonstrate the presence in Nayarit of at least two members of the L. braziliensis complex. Most of the cutaneous lesions were caused by L. (V.) braziliensis and two by another species belonging to the L. braziliensis complex. As far as we are aware, this is the first report of L. (V.) braziliensis in Nayarit. The main risk factor associated with the contraction of this disease in Nayarit is attributed to working on coffee plantations.
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
In Mexico, Triatoma longipennis (Usinger), Triatoma picturata (Usinger), and Triatoma pallidipennis (Stal), primary Chagas disease vector species of the phyllosoma complex, were analyzed by randomly amplified polymorphic DNA (RAPD). Sixteen decametric primers resolved individual profiles not identical, but partially discriminative between species. Analysis based on pairwise presence/absence comparisons between the three species was performed using three primers and two outgroup species Triatoma infestans (Klug) and Triatoma barberi (Usinger). Fifty-three bands in total were scored, although only two bands were constant among the three phyllosoma complex species. Two other bands were constant only for T. longipennis and T. picturata together, and not present in T. pallidipennis. Neighbor Joining tree and the multiple correspondence analysis discriminated T. pallidipennis clearly from the other two species, although there was overlap between T. longipennis and T. picturata. The results indicate a close relationship between the studied species and support the hypothesis of their recent evolution. The suitability of RAPD to discern populations within the species is discussed.
Resumo:
The risk that Chagas disease becomes established as a major endemic threat in Amazonia (the world's largest tropical biome, today inhabited by over 30 million people) relates to a complex set of interacting biological and social determinants. These include intense immigration from endemic areas (possibly introducing parasites and vectors), extensive landscape transformation with uncontrolled deforestation, and the great diversity of wild Trypanosoma cruzi reservoir hosts and vectors (25 species in nine genera), which maintain intense sylvatic transmission cycles. Invasion of houses by adventitious vectors (with infection rates > 60%) is common, and focal adaptation of native triatomines to artificial structures has been reported. Both acute (~ 500) and chronic cases of autochthonous human Chagas disease have been documented beyond doubt in the region. Continuous, low-intensity transmission seems to occur throughout the Amazon, and generates a hypoendemic pattern with seropositivity rates of ~ 1-3%. Discrete foci also exist in which transmission is more intense (e.g., in localized outbreaks probably linked to oral transmission) and prevalence rates higher. Early detection-treatment of acute cases is crucial for avoiding further dispersion of endemic transmission of Chagas disease in Amazonia, and will require the involvement of malaria control and primary health care systems. Comprehensive eco-epidemiological research, including prevalence surveys or the characterization of transmission dynamics in different ecological settings, is still needed. The International Initiative for Chagas Disesae Surveillance and Prevention in the Amazon provides the framework for building up the political and scientific cooperation networks required to confront the challenge of preventing Chagas disease in Amazonia.
Resumo:
One major goal of research on Chagas disease is the development of effective chemotherapy to eliminate the infection from individuals who have not yet developed cardiac and/or digestive disease manifestations. Cure evaluation is the more complex aspect of its treatment, often leading to diverse and controversial results. The absence of reliable methods or a diagnostic gold standard to assess etiologic treatment efficacy still constitutes a major challenge. In an effort to develop more sensitive tools, polymerase chain reaction (PCR)-based assays were introduced to detect low amounts of Trypanosoma cruzi DNA in blood samples from chagasic patients, thus improving the diagnosis and follow-up evaluation after chemotherapy. In this article, I review the main problems concerning drug efficacy and criteria used for cure estimation in treated chagasic patients, and the work conducted by different groups on developing PCR methodologies to monitor treatment outcome of congenital infections as well as recent and late chronic T. cruzi infections.
Resumo:
Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.
Resumo:
There is a general consensus that during chronic Trypanosoma cruzi infection, the host immune system induces complex processes to ensure the control of parasite growth while preserving the potential to mount and maintain a life-long controlled humoral and cellular immune response against the invading pathogen. This review summarises evidence in an attempt to elucidate "what must be understood" to further clarify the role of innate immunity in the development/maintenance of clinical Chagas disease and the impact of etiological treatment on host immunity, highlighting the contributions of the innate immunity and regulatory T (Treg) cells. Recently, increasing focus on innate immunity suggest that chronic T. cruzi infection may cause morbidity when innate effector functions, or the down-regulation of adaptive regulatory mechanisms are lacking. In this context, stable asymptomatic host-parasite interactions seem to be influenced by the effector/regulatory balance with the participation of macrophages, natural killer (NK) and CD8+ T cells in parallel with the establishment of regulatory mechanisms mediated by NKT and Treg cells. Moreover, a balanced innate immune activation state, apart from Treg cells, may play a role in controlling the adverse events triggered by the massive antigen release induced by trypanosomicidal agents during Chagas disease etiological treatment.
Resumo:
In this study we prepared an inclusion complex between an iodide analogue of metronidazole (MTZ-I) and cyclodextrin (CD) to develop a safer and more effective method of treating Trypanosoma cruzi infections. According to our results, MTZ-I and MTZ-I:β-CD were 10 times more active than MTZ, demonstrating that the presence of an iodine atom on the side chain increased the trypanocidal activity while maintaining its cytotoxicity. The selective index shows that MTZ-I was 10 times more active against T. cruzi than it was against mammalian cells. The modification of MTZ side chains provides a promising avenue for the development of new drugs.