55 resultados para Cobalt, Zinc
Resumo:
The objective of this work was to evaluate Zn use efficiency by upland rice genotypes. The experiment was carried out in a greenhouse, with ten upland rice genotypes grown on an Oxisol (Typic Hapludox) with no application, and with application of 10 mg kg-1 Zn, applied as zinc sulfate. Shoot dry weight, grain yield, Zn harvest index, Zn concentration in shoot and in grain were significantly influenced by soil Zn levels and genotypes. However, panicle number and grain harvest index were significantly affected only by genotype. Genotypes CNA8557, CNA8540 and IR42 produced higher grain yield than other genotypes. Genotypes showed significant variability in Zn recovery efficiency. On average, 13% of the applied Zn was recovered by upland rice genotypes. Genotypes with high Zn recovery efficiency could be used in breeding of Zn efficient upland rice cultivars. Higher level of soil Zn (10 mg kg-1) increased significantly the concentrations of plant Cu and Mn. However, Fe concentrations in plant (shoot and grain) were not influenced by soil Zn levels.
Resumo:
The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1), and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO3)2 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1) than in the topsoil samples (0.01-0.34 L kg-1). Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90%) in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.
Resumo:
The objective of this work was to study possible mechanisms involved in root-induced changes of rhizosphere physicochemical properties of rice genotypes, under anoxia and low supply of Zn and Fe. Two rice genotypes, including an upland and a lowland ones, were grown in hydroponic medium under adequate and low supply of Zn and Fe, with or without aeration. Anoxia increased shoot dry weight, root length and uptake of Zn and Fe in lowland Amol genotype, but reduced these parameters in upland Gasrol-Dashti genotype. The amount of oxygen released by roots was statistically higher in 'Amol'. The highest acidification potential of roots was observed in the lowland genotype under low supply of Zn, and in the upland genotype under Fe starvation. The highest oxalate (only organic acid detected) exudation from roots was observed in Zn and Fe deficient Gasrol-Dashti genotype. Zinc deficiency caused reduction of alcohol dehydrogenase and stimulation of lactate dehydrogenase activity, particularly in shoot. The ability to induce changes in the rhizosphere properties has a great contribution for the adaptation of both lowland and upland rice genotypes to specific soil conditions.
Resumo:
ABSTRACT Levels of Zn in tropical soils profoundly influences growth and nutrition of tree crops. Research was undertaken to assess the effect of soil Zn on growth and nutrition of clonal cacao tree seedlings of PH 16. Three acidic Oxisol soils differing in texture were used with nine doses of Zn (0, 1, 2, 4, 8, 16, 32, 48, and 64 mg dm-3). Rooted clonal seedlings were grown in plastic pot with 11 dm-3 of the soils at varying Zn levels for 240 days. At harvest growth (dry matter mass of leaves, stems, shoots, roots, and total) and nutrient concentrations were determined. The clonal cacao seedlings showed differences for production of dry matter mass and foliar nutrient concentrations for P, K, Ca, Mg, Mn, Fe, Zn, and Cu. There was Zn toxicity in all soils.
Resumo:
AbstractObjective:In the present study, the authors investigated the in vitrobehavior of radio-resistant breast adenocarcinoma (MDA-MB-231) cells line and radiosensitive peripheral blood mononuclear cells (PBMC), as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy.Materials and Methods:The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed.Results:Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation.Conclusion:Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
Thermospray flame furnace Atomic Absorption Spectrometry (TS-FF-AAS) was used for the total determination of Cd, Pb and Zn in fresh water and seawater samples at µg L-1 levels, and in marine sediment samples at µg g-1 levels. Using a sample loop of 50 µL and a peristaltic pump the samples were transported into the metallic tube placed over an air/acetylene flame, through a ceramic capillary (o.d. = 3.2 mm) containing two parallel internal orifices (i.d = 0.5 mm). The detection limits determined for Cd, Pb and Zn using a synthetic water matrix (2.5% m/v NaCl, 0.5% m/v MgCl2 and 0.8% m/v CaCl2) were 0.32 µg L-1; 2.6 µg L-1 and 0.21 µg L-1 respectively. The methodology by TS-FF-AAS was validated by determination of Cd, Pb and Zn in certified reference materials of water and marine sediment, and the t-test for differences between means was applied. No statistically significant differences were established in fresh water and seawater (p>0.05), whereas differences became apparent in marine sediment (p<0.03).
Resumo:
Potentiometric studies of sulfathiazole (HST) in the presence and absence of cobalt(II) were performed. Equilibrium constants for the formation of the detected species, [Co(ST)]+ and [Co(ST)(OH)], are reported. UV-Vis spectrophotometric measurements suggest that the coordination Co(II)-sulfathiazole might be through a N atom, which, in agreement with MO calculations, could be a thiazolic one. In spite of sulfonamides being better ligands at pH >7, [Co(ST)]+ was found at pH » 3.
Resumo:
Sweet, sour and bitter tasting fruits, vegetables and medicinal plants are an important component of human diet. The role of chromium and zinc in carbohydrate metabolism for control of diabetes is highlighted in selected commodities. Average levels of chromium and zinc in sweet taste were 0.69 ± 0.48 mg kg-1 and 4.81 ± 4.31 mg kg-1 respectively with correlation of 0.545, while in sour taste the values were 22.5 ± 22.0 mg kg-1 and 24.5 ± 11.8 mg kg-1 respectively with the correlation of 0.239 and in bitter taste, 0.61 ± 0.33 mg kg-1 and 4.70 ± 3.54 mg kg-1 respectively with correlation of 0.343. Overall, sour tasting commodities were found higher in levels of chromium and zinc and are recommended as food supplement for diabeties. None of these species contain metals above the toxic level.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
The electrochemical behaviour of zinc has been extensively studied in alkaline and acid media, but only a few studies have been reported in neutral solutions, particularly in deaerated media. Zinc passivation in neutral medium and the effect of the ClO4- ion on the nucleation and growth of the passive layer is studied in this paper by a transient technique at different electrolyte concentrations and applied potentials. ZnO growth rate was shown to decrease with increasing electrolyte concentration. Moreover, passive layer growth occurred followed by pitting nucleation and growth. Film growth and pit nucleation are explained by means of the Macdonald and Engell-Stolica models.
Resumo:
A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
The anode and the internal paste of spent Zn-C and alkaline batteries were leached with 2 mol L-1 H2SO4 at 80 ºC for 2 h. Solid/liquid ratio was 1/10 (g mL-1). The leachate was treated with Na2S in order to precipitate Hg, Cd and Pb. Zn was quantitatively isolated at pH 1,5-2 by adding Na2S. Mn can be precipitated at pH close to 7. Na2S may be replaced by oxalic acid. Zn precipitated at pH around 0, whereas Mn was quantitatively recovered at pH > 4. Acidity control is a critical parameter. Na2SO4 and carbon are the end products.