81 resultados para Cell mediated immune responses
Resumo:
Visceral leishmaniasis (VL) or kala-azar, a disseminated infection of the lymphoreticular system of the body, is marked by severe defect in immune system of the host. Successful cure of VL depends on the immune status of the host in combination with the effects of the antileishmanial drugs. The rationale approach towards eradication of this disease would be to potentiate the immune functioning of the host in addition to parasite killing. This review deals with different aspects of adaptive and innate immune responses and explores their role in protection or pathogenesis of VL. IL-10 has emerged as the principal cytokine responsible for disease pathogenesis, although evidences regarding its source during active VL remain inconclusive. On the other hand, IFNγ, under the influence of IL-12, is mostly correlated with healing of the disease. Chemokines are important in mounting cell-mediated immune response as they can prevent parasite invasion in association with cytokines. Different types of T cells like CD4, CD8 and NK T cells also contribute to the immunology of this disease. In spite of conflicting reports, the role of regulatory T cells in VL pathogenesis is important. Recently discovered Th17 subset and its different members have been reported to perform diverse functions in the course of VL and leishmaniasis as a whole. Innate immune responses, depending on the cell types, are essential in early parasite detection and subsequent development of an efficient NK cell response. Immunotherapy targeting IL-10 could be looked upon as an interesting option for the treatment of VL.
Resumo:
Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.
Resumo:
Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.
Resumo:
Two attenuated bacillus Calmette-Guérin (BCG) preparations derived from the same Moreau strain, Copenhagen but grown in Sauton medium containing starch and bacto-peptone (onco BCG, O-BCG), or asparagine (intradermal BCG, ID-BCG), exhibited indistinguishable DNA sequences and bacterial morphology. The number of viable bacilli recovered from spleen, liver and lungs was approximately the same in mice inoculated with the vaccines and was similarly reduced (over 90%) in mice previously immunized with either BCG vaccine. The humoral immune response evoked by the vaccines was, however, distinct. Spleen cell proliferation accompanying the growth of bacilli in tissue was significantly higher in mice inoculated with O-BCG. These cells proliferated in vitro upon challenge with the corresponding BCG extract. Previous cell treatment with mAb anti-CD4 T cells abolished this effect. Anti-BCG antibodies, as assayed either in serum by ELISA or by determining the number of antibody-producing spleen cells by the spot-ELISA method, were significantly higher in mice inoculated with ID-BCG. Anti-BCG antibodies were detected in all immunoglobulin classes, but they were more prevalent in IgG with the following distribution among its isotypes: IgG1>(IgG2a = IgG2b)>IgG3. When some well-characterized Mycobacterium tuberculosis antigens were used as substitutes for BCG extracts in ELISA, although antibodies against the 65-kDa and 96-kDa proteins were detected significantly, antibodies against the 71-kDa, 38-kDa proteins and lipoarabinomannan were only barely detected or even absent. These results indicate that BCG bacilli cultured in Sauton-asparagine medium permitted the multiplication of bacilli, tending to induce a stronger humoral immune response as compared with bacilli grown in Sauton-starch/bacto-peptone-enriched medium.
Resumo:
Infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects millions of people in Latin America. Infection with T. cruzi cannot be eliminated by the immune system. A better understanding of immune evasion mechanisms is required in order to develop more effective vaccines. During the acute phase, parasites replicate extensively and release immunomodulatory molecules that delay parasite-specific responses mediated by T cells. This immune evasion allows the parasite to spread in the host. In the chronic phase, parasite evasion relies on its replication strategy of hijacking the TGF-β signaling pathway involved in inflammation and tissue regeneration. In this article, the mechanisms of immune evasion described for T. cruzi are reviewed.
Resumo:
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund’s incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Resumo:
The study evaluated the activity of NK cells during the course of experimental infection of hamsters with Paracoccidioides brasiliensis. Eigthy hamsters were infected with P. brasiliensis by intratesticular route and sacrificed at 24h, 48h, 96h, 1, 2, 4, 8 and 11 weeks of infection and compared to 40 noninfected hamsters employed as controls. These animals were submitted to the study of NK cytotoxic activity by a single-cell assay and humoral immune response by immunodiffusion and ELISA tests. The production of macrophage migration inhibitory factor in the presence of Phyto-hemagglutinin and P. brasiliensis antigen and histopathology of the lesions were evaluated at 1, 4, 8 and 11 weeks of infection. The infected animals displayed significantly high levels of NK activity during the four weeks of infection that decreased from the 8th week on when compared to controls. This impairment of NK activity was associated with depression of cell-mediated immune response and with increase in the extension of the histopathologic lesions. There was an inverse correlation between NK cell activity and specific antibody levels. The results suggest that after initial activation, NK cells were unable to control the fungus dissemination. The impairment of NK activity in the late stages of the infection might be related to immunoregulatory disturbances associated with paracoccidioidomycosis.
Resumo:
Studies of immune responses as they occur in patients with schistosomiasis appear to progress relative to corrent technological advances, and to advance despite the understandable inability to pursue in vivo manipulations in this host/parasite system. Emphasis is most often placed on making immunological comparisons between such patient groups as reinfected/non-reinfected, intestinals/hepatosplenic, high/low intensities of infection, infected/uninfected within endemic areas, and those born of infected/uninfected mothers. Based on these types of comparisons, reasonable conjectures can be made regarding the immunological occurrences during this chronic exposure condition. Some consideration is now being given to the immune mechanisms of some of the observations made, and while some of these must then be carried back to experimental models for further manipulation-based analysis, new technological developments continue to assist in the field/bench ability to ask questions that might assist our understanding to a point where this knowledge can be applied to shaping developmental approaches to vaccine development and the goal of alleviating morbidity.
Resumo:
Adult normal inbred mice rendered tolerant to OVA by previous oral exposure do not respond to intraperitonela immunization with DNP-OVA in adjuvant. These tolerant mice also form less DNP-specific antibodies to DNP-KLH when immunized with mixtures of DNP-KLH and DNP-OVA, or less HGG-specific antibodies when immunized with cross-linked conjugates of OVA and HGG. These same procedures increased DNP-specific or HGG-specific responses in non-tolerant control mice. The cross-supperssion was ineffective, however, to inhibit already ongoing antibody responses.
Resumo:
Modulation by BCG and/or cyclophosphamide of sensitization of mice with flagellar fraction (a tubulin-enriched fraction) prevented death of mice challenged with T. cruzi CL strain trypomastigotes recovered from Vero cells. A methodology was ceveloped to assay specific antigens and to determine optimal doses for sensitization and elicitation of DTH in mice. CL strain is predominantly myotropic strain which does not produce important parasitism of mononuclear phagocyte cells; these cells appear to control infection when activated in vivo. Maximum protection was seen in this study when BCG and cyclophosphamide were associated, but protection was observed also when cyclophosphamide, that prevents supressor T cells, was applied 2 days before flagellar fraction sensitization in normal mice. These experiments suggested that the macrophage may have an important role in the early phases of infection particularly when nonspecific stimulation is associated with specific sensitization. A correlation betwen delayed hypersensitivity to parasite antigens and protection was observed.
Resumo:
Previous evidences reported by us and by other authors revealed the presence of IgG in sera of Schistosoma mansoni-infected patients to immunodominant antigens which are enzymes. Besides their immunological interest as possible inductors of protection, several of these enzume antigens might be also intersting markers of infection in antibody-detecting immunocapture assays which use the intrinsic catalytic property of these antigens. It was thus thought important to define some enzymatic and immunological characteristics of these molecules to better exploit their use as antigens. Four different enzymes from adult worms were partially characterized in their biochemical properties and susceptibility to react with antibodies of infected patients, namely alkaline phosphatase (AKP, Mg*+, pH 9.5), type I phosphodiesterase (PDE, pH 9.5), cysteine proteinase (CP, dithiothreitol, pH 5.5) and N-acetyl-ß-D-glucosaminidase (NAG, pH 5.5). The AKP and PDE are distinct tegumental membrane-bound enzymes whereas CP and NAG are soluble acid enzymes. Antibodies in infected human sera differed in their capacity to react with and to inhibit these enzyme antigens. Possibly, the specificity of the antibodies related to the extent of homology between the parasite and the host enzyme might be in part responsible for the above differences. The results are also discussed in view of the possible functional importance of these enzymes.
Resumo:
The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.