89 resultados para Cdna
Resumo:
The aim of this study was to evaluate the genotypic resistance profiles of HIV-1 in children failing highly active antiretroviral therapy (HAART). Forty-one children (median age = 67 months) receiving HAART were submitted to genotypic testing when virological failure was detected. cDNA was extracted from PBMCs and amplified by nested PCR for the reverse transcriptase and protease regions of the pol gene. Drug resistance genotypes were determined from DNA sequencing. According to the genotypic analysis, 12/36 (33.3%) and 6/36 (16.6%) children showed resistance and possible resistance, respectively, to ZDV; 5/36 (14%) and 4/36 (11.1%), respectively, showed resistance and possible resistance to ddI; 4/36 (11.1%) showed resistance to 3TC and D4T; and 3/36 (8.3%) showed resistance to Abacavir. A high percentage (54%) of children exhibited mutations conferring resistance to NNRTI class drugs. Respective rates of resistance and possible resistance to PIs were: RTV (12.2%, 7.3%); APV (2.4%, 12.1%); SQV(0%, 12.1%); IDV (14.6%, 4.9%), NFV (22%, 4.9%), LPV/RTV (2.4%, 12.1%). Overall, 37/41 (90%) children exhibited virus with mutations related to drug resistance, while 9% exhibited resistance to all three antiretroviral drug classes.
Resumo:
DNA extracted from peripheral blood of two Ecuadorian patients showing severe digestive pathology was amplified by the polymerase chain reaction using a Trypanosoma cruzi specific oligonucleotide primers derived from the primary sequence of a cDNA encoding for a 24 kDa excretory/secretory protein. The positive PCR results together with the clinical findings confirmed that both patients had a digestive pathology due to Chagas' disease. This pathology could be more frequent than previously described in the chagasic endemic regions of Andean countries.
Resumo:
We have studied the gene expression, especially of the oncoproteins, and its regulation in schistosomes. Schistosomes have a complex life cycle with defined dimorphic lifestyle. The parasite are so far unique in biology in expressing oncogene products in their adult stage. In order to characterize the expression and developmental regulation, a lambda gt 11 cDNA library and lambda EMBL4 genomic DNA library of each growth stage of Schistosoma mansoni and S. japonicum was constructed, and was screened with various monoclonal antibodies against ongogene products. One positive plaque reacted to anti-p53 antibody (Ab-2, Oncogene Science, Inc.) was further analyzed. This fusion protein was about 120 KDa in molecular weights, and expressed as 1.4 Kb RNA in the adult stage. P53 gene is well-known as the negative regulator of the cell cicle, and the mutations in the gene are turning out to be the most common genetic alterations in human cancers. The comparison of the gene structure among species and stages were being conducted. Chromosome structures, C-band formation, and the results of in situ hybridization using the phage probe would be discussed.
Resumo:
The determination of amino acid changes in the envelop protein by direct sequencing of either genomic RNA or PCR-amplified cDNA fragments provides useful informations for assessing the genetic variability and the geographic distribution of the actually most widespread dengue-2 serotype. The possible link of variations in the envelope protein-gene and virus virulence is discussed.
Resumo:
Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.
Resumo:
A Schistosoma mansoni adult worm anionic fraction (PIII) has previously been shown to protect mice against challenge infection and to reduce pulmonary and hepatic granulomatous hypersensitivity. Serum from PIII-immunized rabbit was used to screen a lgt11 cDNA library from S. mansoni adult worm in order to identify antigens capable of modulating granulomatous hypersensitivity. We obtained four clones with 400 (Sm-III.11), 900 (Sm-III.16), 1100 (Sm-III.10) and 1300 (Sm-III.12) bp of length. All clone-specific antibodies were able to recognize most of the PIII components. The sequence analysis showed that these clones presented high homology with S. mansoni paramyosin (Sm-97). These findings ascribe a new function to this antigen with an important role in modulation of granulomatous hypersensitivity to S. mansoni eggs
Resumo:
"The host-parasite relationship" is a vast and diverse research field which, despite huge human and financial input over many years, remains largely shrouded in mystery. Clearly, the adaptation of parasites to their different host species, and to the different environmental stresses that they represent, depends on interactions with, and responses to, various molecules of host and/or parasite origin. The schistosome genome project is a primary strategy to reach the goal; this systematic research project has successfully developed novel technologies for qualitative and quantitative characterization of schistosome genes and genome organization by extensive international collaboration between top quality laboratories. Schistosomes are a family of parasitic blood flukes (Phylum Platyhelminthes), which have seven pairs of autosomal chromosomes and one pair of sex chromosomes (ZZ for a male worm and ZW for a female), of a haploid genome size of 2.7x108 base pairs (Simpson et al. 1982). Schistosomes are ideal model organisms for the development of genome mapping strategies since they have a small genome size comparable to that of well-characterized model organisms such as Caenorhabditis elegans (100 Mb) and Drosophila (165 Mb), and contain functional genes with a high level of homology to the host mammalian genes. Here we summarize the current progress in the schistosome genome project, the information of 3,047 transcribed genes (Expressed Sequence Tags; EST), complete sets of cDNA and genomic DNA libraries (including YAC and cosmid libraries) with a mapping technique to the well defined schistosome chromosomes. The schistosome genome project will further identify and characterize the key molecules that are responsible for host-parasite adaptation, i.e., successful growth, development, maturation and reproduction of the parasite within its host in the near future
Resumo:
Random single pass sequencing of cDNA fragments, also known as generation of Expressed Sequence Tags (ESTs), has been highly successful in the study of the gene content of higher organisms, and forms an integral part of most genome projects, with the objective to identify new genes and targets for disease control and prevention and to generate mapping probes. In the Trypanosoma cruzi genome project, EST sequencing has also been a starting point, and here we report data on the first 797 sequences obtained, partly from a CL Brener epimastigote non-normalized library, partly on a normalized library. Only around 30% of the sequences obtained showed similarity with Genbank and dbEST databases, half of which with sequences already reported for T. cruzi.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
The use of yellow fever (YF) virus 17D strain for vaccine production adapted in Brazil since its introduction in 1937 was reviewed. This was possible due to the availability of official records of vaccine production. The retrieved data highlight the simultaneous use of several serially passaged 17D substrain viruses for both inocula and vaccine preparation that allowed uninterrupted production. Substitution of these substrain viruses became possible with the experience gained during quality control and human vaccination. Post-vaccinal complications in humans and the failure of some viruses in quality control tests (neurovirulence for monkeys) indicated that variables needed to be reduced during vaccine production, leading to the development of the seed lot system. The 17DD substrain, still used today, was the most frequently used substrain and the most reliable in terms of safety and efficacy. For this reason, it is possible to derive an infectious cDNA clone of this substrain combined with production in cell culture that could be used to direct the expression of heterologous antigens and lead to the development of new live vaccines.
Resumo:
The zinc finger motifs (Cys2His2) are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.
Resumo:
A study was undertaken to search for DNA recombinant Schistosoma mansoni proteins responsible for eliciting an antibody response from the host at a very early phase after infection. A S. mansoni adult worm cDNA expression library was screened using pooled sera from baboons with four weeks of infection. Based on their specific reactivity with the S. mansoni infected sera and no reactivity when tested against the pre-infection sera from the same baboons, four clones were selected for further studies. Sequence analysis revealed that they were homologous to the S. mansoni heat shock protein 70 (hsp70). The insert sizes of the four selected clones varied from 1150 to 2006 bp. The preliminary characterization for antibody reactivity against a panel of baboon sera showed that the longest clone was the most reactive, eight out of eight acute and three out of four chronic sera reacting positively to this clone. The shortest clone was the least reactive. Our results suggest that the S. mansoni hsp70 elicits an early and strong antibody response in baboons and that antibodies to this protein can be detected in chronically infected animals. Therefore S. mansoni hsp70 may be a valid target for immunodiagnosis. However further studies are needed to identify the portion of the hsp70 that best fits the requirements for a valuable diagnostic antigen.
Resumo:
The human nuclear protein RbAp48 is a member of the tryptophan/aspartate (WD) repeat family, which binds to the retinoblastoma (Rb) protein. It also corresponds to the smallest subunit of the chromatin assembly factor and is able to bind to the helix 1 of histone H4, taking it to the DNA in replication. A cDNA homologous to the human gene RbAp48 was isolated from a Schistosoma mansoni adult worm library and named SmRbAp48. The full length sequence of SmRbAp48 cDNA is 1036 bp long, encoding a protein of 308 amino acids. The transcript of SmRbAp48 was detected in egg, cercariae and schistosomulum stages. The protein shows 84% similarity with the human RbAp48, possessing four WD repeats on its C-terminus. A hypothetical tridimensional structure for the SmRbAp48 C-terminal domain was constructed by computational molecular modeling using the b-subunit of the G protein as a model. To further verify a possible interaction between SmRbAp48 and S. mansoni histone H4, the histone H4 gene was amplified from adult worm genomic DNA using degenerated primers. The gene fragment of SmH4 is 294 bp long, encoding a protein of 98 amino acids which is 100% identical to histone H4 from Drosophila melanogaster.
Resumo:
Sm8 is a major tegumental antigen of Schistosoma mansoni. The partial cDNA was isolated and analyzed. Sequence analysis revealed transmembrane compatible hydrophobic domains and a putative leucine zipper pattern. The mRNA and the protein are predominantly expressed in adult worms.