105 resultados para Caudal de Bypass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a dense serotonergic projection from nucleus raphe pallidus and nucleus raphe obscurus to the trigeminal motor nucleus and serotonin exerts a strong facilitatory action on the trigeminal motoneurons. Some serotonergic neurons in these caudal raphe nuclei increase their discharge during feeding. The objective of the present study was to investigate the possibility that the activity of these serotonergic neurons is related to activity of masticatory muscles. Cats were implanted with microelectrodes and gross electrodes. Caudal raphe single neuron activity, electrocorticographic activity, and splenius, digastric and masseter electromyographic activities were recorded during active behaviors (feeding and grooming), during quiet waking and during sleep. Seven presumed serotonergic neurons were identified. These neurons showed a long duration action potential (>2.0 ms), and discharged slowly (2-7 Hz) and very regularly (interspike interval coefficient of variation <0.3) during quiet waking. The activity of these neurons decreased remarkably during fast wave sleep (78-100%). Six of these neurons showed tonic changes in their activity positively related to digastric and/or masseter muscle activity but not to splenius muscle activity during waking. These data are consistent with the hypothesis that serotonergic neurons in the caudal raphe nuclei play an important role in the control of jaw movements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB), 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA), and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD). Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day) was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS) during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX) were: 25% VAS (CPB) vs 10% VAS (control), P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX) was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involvement of the caudal raphe nuclei (raphe pallidus, RPa; raphe magnus, RMg, and raphe obscurus, ROb) in feeding behavior of adult rats was studied by measuring c-Fos protein expression, in animals submitted to the "meal-feeding" model of food restriction in which the rats were fed ad libitum only from 7:00 to 9:00 h, for 15 days. The experimental groups submitted to chronic fasting, named 'search for food' (SF), 'ingestion of food' (IF) and 'satiety of food' (SaF) were scheduled after a previous study in which the body weight and the general and feeding behaviors were evaluated by daily monitoring. Acute, 48-h fasting (AF) was used as control. In the chronic group, the animals presented a 16% reduction in body weight in the first week, followed by a continuous, slow rise in weight over the subsequent days. Entrainment of the sleep-wake cycle to the schedule of food presentation was also observed. The RPa was the most Fos immunopositive nucleus in the chronic fasting group, followed by the RMg. The ANOVA and Tukey test (P<0.05) confirmed these results. The IF group was significantly different from the other three groups, as also was the number of labeled cells in the RPa in SF and IF groups. Nevertheless, no significant difference was observed between RMg and RPa, or RMg and ROb in the SaF and AF. However, it is interesting to observe that the groups in which the animals were more active, searching for or ingesting food, presented a larger number of labeled cells. These results suggest a different involvement of the caudal raphe nuclei in the somatic and autonomic events of feeding behavior, corroborating the functions reported for them earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the behavioral correlates of the activity of serotonergic and non-serotonergic neurons in the nucleus raphe pallidus (NRP) and nucleus raphe obscurus (NRO) of unanesthetized and unrestrained cats. The animals were implanted with electrodes for recording single unit activity, parietal oscillographic activity, and splenius, digastric and masseter electromyographic activities. They were tested along the waking-sleep cycle, during sensory stimulation and during drinking behavior. The discharge of the serotonergic neurons decreased progressively from quiet waking to slow wave sleep and to fast wave sleep. Ten different patterns of relative discharge across the three states were observed for the non-serotonergic neurons. Several non-serotonergic neurons showed cyclic discharge fluctuations related to respiration during one, two or all three states. While serotonergic neurons were usually unresponsive to the sensory stimuli used, many non-serotonergic neurons responded to these stimuli. Several non-serotonergic neurons showed a phasic relationship with splenius muscle activity during auditory stimulation. One serotonergic neuron showed a tonic relationship with digastric muscle activity during drinking behavior. A few non-serotonergic neurons exhibited a tonic relationship with digastric and/or masseter muscle activity during this behavior. Many non-serotonergic neurons exhibited a phasic relationship with these muscle activities, also during this behavior. These results suggest that the serotonergic neurons in the NRP and NRO constitute a relatively homogeneous population from a functional point of view, while the non-serotonergic neurons form groups with considerable functional specificity. The data support the idea that the NRP and NRO are implicated in the control of somatic motor output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the caudal pressor area (CPA) in the maintenance of vasomotor tonus in anesthetized and decerebrate animals has been clearly established. In conscious animals, however, the participation of CPA in the cardiovascular control remains to be fully elucidated. In the present study, unilateral L-glutamate (L-Glu) (10 and/or 20 nmol/70 nl) microinjection into CPA, in conscious male Wistar rats (250-280 g) caused a significant increase in mean arterial blood pressure (MAP; control: 112 ± 1.9 mmHg; after 20 nmol L-Glu: 139 ± 4.5 mmHg, N = 12, P<0.05) and respiratory rate (control: 81 ± 3.5 breaths/min; after 10 nmol L-Glu: 92 ± 3 breaths/min, P<0.05; after 20 nmol L-Glu: 104 ± 5 breaths/min, N = 6, P<0.05). The subsequent anesthesia with urethane caused a significant increase in basal respiratory frequency (conscious: 81 ± 3.5 breaths/min; under urethane: 107 ± 1.3 breaths/min, N = 6, P<0.05). Anesthesia also significantly attenuated L-Glu-evoked pressor (conscious: deltaMAP = +27 mmHg; anesthetized: deltaMAP = +18 mmHg, P<0.05) and respiratory responses. These results suggest that glutamatergic receptors in the CPA are involved in cardiovascular and respiratory modulation in conscious rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacokinetics of propranolol may be altered by hypothermic cardiopulmonary bypass (CPB), resulting in unpredictable postoperative hemodynamic responses to usual doses. The objective of the present study was to investigate the pharmacokinetics of propranolol in patients undergoing coronary artery bypass grafting (CABG) by CPB under moderate hypothermia. We evaluated 11 patients, 4 women and 7 men (mean age 57 ± 8 years, mean weight 75.4 ± 11.9 kg and mean body surface area 1.83 ± 0.19 m²), receiving propranolol before surgery (80-240 mg a day) and postoperatively (10 mg a day). Plasma propranolol levels were measured before and after CPB by high-performance liquid chromatography. Pharmacokinetic Solutions 2.0 software was used to estimate the pharmacokinetic parameters after administration of the drug pre- and postoperatively. There was an increase of biological half-life from 4.5 (95% CI = 3.9-6.9) to 10.6 h (95% CI = 8.2-14.7; P < 0.01) and an increase in volume of distribution from 4.9 (95% CI = 3.2-14.3) to 8.3 l/kg (95% CI = 6.5-32.1; P < 0.05), while total clearance remained unchanged 9.2 (95% CI = 7.7-24.6) vs 10.7 ml min-1 kg-1 (95% CI = 7.7-26.6; NS) after surgery. In conclusion, increases in drug distribution could be explained in part by hemodilution during CPB. On the other hand, the increase of biological half-life can be attributed to changes in hepatic metabolism induced by CPB under moderate hypothermia. These alterations in the pharmacokinetics of propranolol after CABG with hypothermic CPB might induce a greater myocardial depression in response to propranolol than would be expected with an equivalent dose during the postoperative period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiopulmonary bypass is frequently associated with excessive blood loss. Platelet dysfunction is the main cause of non-surgical bleeding after open-heart surgery. We randomized 65 patients in a double-blind fashion to receive tranexamic acid or placebo in order to determine whether antifibrinolytic therapy reduces chest tube drainage. The tranexamic acid group received an intravenous loading dose of 10 mg/kg, before the skin incision, followed by a continuous infusion of 1 mg kg-1 h-1 for 5 h. The placebo group received a bolus of normal saline solution and continuous infusion of normal saline for 5 h. Postoperative bleeding and fibrinolytic activity were assessed. Hematologic data, convulsive seizures, allogeneic transfusion, occurrence of myocardial infarction, mortality, allergic reactions, postoperative renal insufficiency, and reopening rate were also evaluated. The placebo group had a greater postoperative blood loss (median (25th to 75th percentile) 12 h after surgery (540 (350-750) vs 300 (250-455) mL, P = 0.001). The placebo group also had greater blood loss 24 h after surgery (800 (520-1050) vs 500 (415-725) mL, P = 0.008). There was a significant increase in plasma D-dimer levels after coronary artery bypass grafting only in patients of the placebo group, whereas no significant changes were observed in the group treated with tranexamic acid. The D-dimer levels were 1057 (1025-1100) µg/L in the placebo group and 520 (435-837) µg/L in the tranexamic acid group (P = 0.01). We conclude that tranexamic acid effectively reduces postoperative bleeding and fibrinolysis in patients undergoing first-time coronary artery bypass grafting compared to placebo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the ventrolateral medulla contains neurons involved in the tonic and reflex control of the cardiovascular system. Two regions within the ventrolateral medulla were initially identified: the rostral ventrolateral medulla (RVLM) and the caudal ventrolateral medulla (CVLM). Activation of the RVLM raises arterial blood pressure and sympathetic nerve activity, and activation of the CVLM causes opposite effects. The RVLM premotor neurons project directly to sympathetic preganglionic neurons and are involved in the maintenance of resting sympathetic vasomotor tone. A significant proportion of tonic activity in the RVLM sympathetic premotor neurons is driven by neurons located in a third region of the ventrolateral medulla denominated caudal pressor area (CPA). The CPA is a pressor region located at the extreme caudal part of the ventrolateral medulla that appears to have an important role controlling the activity of RVLM neurons. In this brief review, we will address the importance of the ventrolateral medulla neurons for the generation of resting sympathetic tone related to arterial blood pressure control focusing on two regions, the RVLM and the CPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pharmacokinetics of some β-blockers are altered by cardiopulmonary bypass (CPB). The objective of this study was to compare the effect of coronary artery bypass graft (CABG) surgery employing CPB on the pharmacokinetics of propranolol and atenolol. We studied patients receiving oral propranolol with doses ranging from 80 to 240 mg (N = 11) or atenolol with doses ranging from 25 to 100 mg (N = 8) in the pre- and postoperative period of CABG with moderately hypothermic CPB (32°C). On the day before and on the first day after surgery, blood samples were collected before β-blocker administration and every 2 h thereafter. Plasma levels were determined using high-performance liquid chromatography and data were treated by pharmacokinetics-modelling. Statistical analysis was performed using ANOVA or the Friedman test, as appropriate, and P < 0.05 was considered to be significant. A prolongation of propranolol biological half-life from 5.41 ± 0.75 to 11.46 ± 1.66 h (P = 0.0028) and an increase in propranolol volume of distribution from 8.70 ± 2.83 to 19.33 ± 6.52 L/kg (P = 0.0032) were observed after CABG with CPB. No significant changes were observed in either atenolol biological half-life (from 11.20 ± 1.60 to 11.44 ± 2.89 h) or atenolol volume of distribution (from 2.90 ± 0.36 to 3.83 ± 0.72 L/kg). Total clearance was not changed by surgery. These CPB-induced alterations in propranolol pharmacokinetics may promote unexpected long-lasting effects in the postoperative period while the effects of atenolol were not modified by CPB surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of continuous positive airway pressure (CPAP) produces important hemodynamic alterations, which can influence breathing pattern (BP) and heart rate variability (HRV). The aim of this study was to evaluate the effects of different levels of CPAP on postoperative BP and HRV after coronary artery bypass grafting (CABG) surgery and the impact of CABG surgery on these variables. Eighteen patients undergoing CABG were evaluated postoperatively during spontaneous breathing (SB) and application of four levels of CPAP applied in random order: sham (3 cmH2O), 5 cmH2O, 8 cmH2O, and 12 cmH2O. HRV was analyzed in time and frequency domains and by nonlinear methods and BP was analyzed in different variables (breathing frequency, inspiratory tidal volume, inspiratory and expiratory time, total breath time, fractional inspiratory time, percent rib cage inspiratory contribution to tidal volume, phase relation during inspiration, phase relation during expiration). There was significant postoperative impairment in HRV and BP after CABG surgery compared to the preoperative period and improvement of DFAα1, DFAα2 and SD2 indexes, and ventilatory variables during postoperative CPAP application, with a greater effect when 8 and 12 cmH2O were applied. A positive correlation (P < 0.05 and r = 0.64; Spearman) was found between DFAα1 and inspiratory time to the delta of 12 cmH2O and SB of HRV and respiratory values. Acute application of CPAP was able to alter cardiac autonomic nervous system control and BP of patients undergoing CABG surgery and 8 and 12 cmH2O of CPAP provided the best performance of pulmonary and cardiac autonomic functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxemia is a frequent complication after coronary artery bypass graft (CABG) with cardiopulmonary bypass (CPB), usually attributed to atelectasis. Using computed tomography (CT), we investigated postoperative pulmonary alterations and their impact on blood oxygenation. Eighteen non-hypoxemic patients (15 men and 3 women) with normal cardiac function scheduled for CABG under CPB were studied. Hemodynamic measurements and blood samples were obtained before surgery, after intubation, after CPB, at admission to the intensive care unit, and 12, 24, and 48 h after surgery. Pre- and postoperative volumetric thoracic CT scans were acquired under apnea conditions after a spontaneous expiration. Data were analyzed by the paired Student t-test and one-way repeated measures analysis of variance. Mean age was 63 ± 9 years. The PaO2/FiO2 ratio was significantly reduced after anesthesia induction, reaching its nadir after CPB and partially improving 12 h after surgery. Compared to preoperative CT, there was a 31% postoperative reduction in pulmonary gas volume (P < 0.001) while tissue volume increased by 19% (P < 0.001). Non-aerated lung increased by 253 ± 97 g (P < 0.001), from 3 to 27%, after surgery and poorly aerated lung by 72 ± 68 g (P < 0.001), from 24 to 27%, while normally aerated lung was reduced by 147 ± 119 g (P < 0.001), from 72 to 46%. No correlations (Pearson) were observed between PaO2/FiO2 ratio or shunt fraction at 24 h postoperatively and postoperative lung alterations. The data show that lung structure is profoundly modified after CABG with CPB. Taken together, multiple changes occurring in the lungs contribute to postoperative hypoxemia rather than atelectasis alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of obesity has increased to epidemic status worldwide. Thousands of morbidly obese individuals undergo bariatric surgery for sustained weight loss; however, mid- and long-term outcomes of this surgery are still uncertain. Our objective was to estimate the 10-year mortality rate, and determine risk factors associated with death in young morbidly obese adults who underwent bariatric surgery. All patients who underwent open Roux-in-Y gastric bypass surgery between 2001 and 2010, covered by an insurance company, were analyzed to determine possible associations between risk factors present at the time of surgery and deaths related and unrelated to the surgery. Among the 4344 patients included in the study, 79% were female with a median age of 34.9 years and median body mass index (BMI) of 42 kg/m2. The 30-day and 10-year mortality rates were 0.55 and 3.34%, respectively, and 53.7% of deaths were related to early or late complications following bariatric surgery. Among these, 42.7% of the deaths were due to sepsis and 24.3% to cardiovascular complications. Male gender, age ≥50 years, BMI ≥50 kg/m2, and hypertension significantly increased the hazard for all deaths (P<0.001). Age ≥50 years, BMI ≥50 kg/m2, and surgeon inexperience elevated the hazard of death from causes related to surgery. Male gender and age ≥50 years were the factors associated with increased mortality from death not related to surgery. The overall risk of death after bariatric surgery was quite low, and half of the deaths were related to the surgery. Older patients and superobese patients were at greater risk of surgery-related deaths, as were patients operated on by less experienced surgeons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiopulmonary bypass (CPB) with extracorporeal circulation produces changes in the immune system accompanied by an increase in proinflammatory cytokines and a decrease in anti-inflammatory cytokines. We hypothesize that dexmedetomidine (DEX) as an anesthetic adjuvant modulates the inflammatory response after coronary artery bypass graft surgery with mini-CPB. In a prospective, randomized, blind study, 12 patients (4 females and 8 males, age range 42-72) were assigned to DEX group and compared with a conventional total intravenous anesthesia (TIVA) group of 11 patients (4 females and 7 males). The endpoints used to assess inflammatory and biochemical responses to mini-CPB were plasma interleukin (IL)-1, IL-6, IL-10, interferon (INF)-γ, tumor necrosis factor (TNF)-α, C-reactive protein, creatine phosphokinase, creatine phosphokinase-MB, cardiac troponin I, cortisol, and glucose levels. These variables were determined before anesthesia, 90 min after beginning CPB, 5 h after beginning CPB, and 24 h after the end of surgery. Endpoints of oxidative stress, including thiobarbituric acid reactive species and delta-aminolevulinate dehydratase activity in erythrocytes were also determined. DEX+TIVA use was associated with a significant reduction in IL-1, IL-6, TNF-α, and INF-γ (P<0.0001) levels compared with TIVA (two-way ANOVA). In contrast, the surgery-induced increase in thiobarbituric acid reactive species was higher in the DEX+TIVA group than in the TIVA group (P<0.01; two-way ANOVA). Delta-aminolevulinate dehydratase activity was decreased after CPB (P<0.001), but there was no difference between the two groups. DEX as an adjuvant in anesthesia reduced circulating IL-1, IL-6, TNF-α, and INF-γ levels after mini-CPB. These findings indicate an interesting anti-inflammatory effect of DEX, which should be studied in different types of surgical interventions.