69 resultados para Capthsanthin-capsorubin synthase
Resumo:
Acute nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on chronotropic and pressor responses was studied in anesthetized intact rats and rats submitted to partial and complete autonomic blockade. Blood pressure and heart rate were monitored intra-arterially. Intravenous L-NAME injection (7.5 mg/kg) elicited the same hypertensive response in intact rats and in rats with partial (ganglionic and parasympathetic blockade) and complete autonomic blockade (38 ± 3, 55 ± 6, 54 ± 5, 45 ± 5 mmHg, respectively; N = 9, P = NS). L-NAME-induced bradycardia at the time when blood pressure reached the peak plateau was similar in intact rats and in rats with partial autonomic blockade (43 ± 8, 38 ± 5, 46 ± 6 bpm, respectively; N = 9, P = NS). Rats with combined autonomic blockade showed a tachycardic response to L-NAME (10 ± 3 bpm, P<0.05 vs intact animals, N = 9). Increasing doses of L-NAME (5.0, 7.5 and 10 mg/kg, N = 9) caused a similar increase in blood pressure (45 ± 5, 38 ± 3, 44 ± 9 mmHg, respectively; P = NS) and heart rate (31 ± 4, 34 ± 3, 35 ± 4 bpm, respectively; P = NS). Addition of L-NAME (500 µM) to isolated atria from rats killed by cervical dislocation and rats previously subjected to complete autonomic blockade did not affect spontaneous beating or contractile strength (N = 9). In vivo results showed that L-NAME promoted a tachycardic response in rats with complete autonomic blockade, whereas the in vitro experiments showed no effect on intrinsic heart rate, suggesting that humoral mechanisms may be involved in the L-NAME-induced cardiac response.
Resumo:
We investigated the level of expression of neuronal nitric oxide synthase (nNOS) in the retinorecipient layers of the rat superior colliculus during early postnatal development. Male and female Lister rats ranging in age between the day of birth (P0) and the fourth postnatal week were used in the present study. Two biochemical methods were used, i.e., in vitro measurement of NOS specific activity by the conversion of [³H]-arginine to [³H]-citrulline, and analysis of Western blotting immunoreactive bands from superior colliculus homogenates. As revealed by Western blotting, very weak immunoreactive bands were observed as early as P0-2, and their intensity increased progressively at least until P21. The analysis of specific activity of NOS showed similar results. There was a progressive increase in enzymatic activity until near the end of the second postnatal week, and a nonsignificant tendency to an increase until the end of the third week was also observed. Thus, these results indicated an increase in the amount of nNOS during the first weeks after birth. Our results confirm and extend previous reports using histochemistry for NADPH-diaphorase and immunocytochemistry for nNOS, which showed a progressive increase in the number of stained cells in the superficial layers during the first two postnatal weeks, reaching an adult pattern at the end of the third week. Furthermore, our results suggested that nNOS is present in an active form in the rat superior colliculus during the period of refinement of the retinocollicular pathway.
Resumo:
The objective of the present study was to determine the relationship between nitric oxide synthases (NOS) and heart failure in cardiac tissue from patients with and without cardiac decompensation. Right atrial tissue was excised from patients with coronary artery disease (CAD) and left ventricular ejection fraction (LVEF) <35% (N = 10), and from patients with CAD and LVEF >60% (N = 10) during cardiac surgery. NOS activity was measured by the conversion of L-[H³]-arginine to L-[H³]-citrulline. Gene expression was quantified by the competitive reverse transcription-polymerase chain reaction. Both endothelial NOS (eNOS) activity and expression were significantly reduced in failing hearts compared to non-failing hearts: 0.36 ± 0.18 vs 1.51 ± 0.31 pmol mg-1 min-1 (P < 0.0001) and 0.37 ± 0.08 vs 0.78 ± 0.09 relative cDNA absorbance at 320 nm (P < 0.0001), respectively. In contrast, inducible NOS (iNOS) activity and expression were significantly higher in failing hearts than in non-failing hearts: 4.00 ± 0.90 vs 1.54 ± 0.65 pmol mg-1 min-1 (P < 0.0001) and 2.19 ± 0.27 vs 1.43 ± 0.13 cDNA absorbance at 320 nm (P < 0.0001), respectively. We conclude that heart failure down-regulates both eNOS activity and expression in cardiac tissue from patients with LVEF <35%. In contrast, iNOS activity and expression are increased in failing hearts and may represent an alternative mechanism for nitric oxide production in heart failure due to ischemic disease.
Resumo:
Cholecystokinin (CCK) influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM) and cerulein (EC50: 58; 95% CI: 18-281 nM) induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG) reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM) in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H³]-arginine to L-[H³]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system.
Resumo:
Gastrointestinal motility disturbances during endotoxemia are probably caused by lipopolysaccharide (LPS)-induced factors: candidates include nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1ß, and interleukin-6. Flow cytometry was used to determine the effects of LPS and these factors on gastric emptying (evaluated indirectly by determining percent gastric retention; %GR) and gastrointestinal transit (GIT) in male BALB/c mice (23-28 g). NO (300 µg/mouse, N = 8) and TNF-alpha (2 µg/mouse, N = 7) increased (P < 0.01) GR and delayed GIT, mimicking the effect of LPS (50 µg/mouse). During early endotoxemia (1.5 h after LPS), inhibition of inducible NO synthase (iNOS) by a selective inhibitor, 1400 W (150 µg/mouse, N = 11), but not antibody neutralization of TNF-alpha (200 µg/mouse, N = 11), reversed the increase of GR (%GR 78.8 ± 3.3 vs 47.2 ± 7.5%) and the delay of GIT (geometric center 3.7 ± 0.4 vs 5.6 ± 0.2). During late endotoxemia (8 h after LPS), both iNOS inhibition (N = 9) and TNF-alpha neutralization (N = 9) reversed the increase of GR (%GR 33.7 ± 2.0 vs 19.1 ± 2.6% (1400 W) and 20.1 ± 2.0% (anti-TNF-alpha)), but only TNF-alpha neutralization reversed the delay of GIT (geometric center 3.9 ± 0.4 vs 5.9 ± 0.2). These findings suggest that iNOS, but not TNF-alpha, is associated with delayed gastric emptying and GIT during early endotoxemia and that during late endotoxemia, both factors are associated with delayed gastric emptying, but only TNF-alpha is associated with delayed GIT.
Resumo:
The 894G>T polymorphism of the endothelial constitutive nitric oxide synthase gene consists of the substitution of a guanine base by a thymine at the 894th nucleotide of the gene. An association of this polymorphism with acute coronary syndromes has been described, only when in combination with other polymorphisms of this gene. The aim of the present study was to search for an association between this polymorphism and unstable angina in a southern Brazilian population. In a case-control study, 156 patients (group 1 (N = 83): unstable angina, group 2 (N = 73): stable angina) were genotyped by PCR and digestion of the product. Univariate analysis demonstrated that the minimal luminal diameter and the degree of stenosis of the culprit lesion differed between groups (P = 0.006 and 0.005, respectively). In addition, the frequencies of the T allele and of the T allele carriers (combined TT and TG genotypes) were significantly higher in the group with unstable angina (41.6 vs 28.8%; P = 0.025, Pearson chi-square test, and 73.5 vs 45.2%; P = 0.001, Pearson chi-square test, respectively). Multivariate logistic regression showed that the frequency of the T allele carriers was the only variable with a predictive value for unstable angina, when controlled for the other variables (6.1 (95% CI = 2.55-14.43); P < 0.001). Thus, in a homogenous group of patients, the endothelial constitutive nitric oxide synthase 894G>T polymorphism was associated with unstable angina. We suggest that this polymorphism may be a genetic risk factor for unstable angina.
Resumo:
Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.
Resumo:
Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.
Resumo:
Sepsis involves a systemic inflammatory response of multiple endogenous mediators, resulting in many of the injurious and sometimes fatal physiological symptoms of the disease. This systemic activation leads to a compromised vascular response and endothelial dysfunction. Purine nucleotides interact with purinoceptors and initiate a variety of physiological processes that play an important role in maintaining cardiovascular function. The purpose of the present study was to investigate the effects of ATP on vascular function in a lipopolysaccharide (LPS) model of sepsis. LPS induced a significant increase in aortic superoxide production 16 h after injection. Addition of ATP to the organ bath incubation solution reduced superoxide production by the aortas of endotoxemic animals. Reactive Blue, an antagonist of the P2Y receptor, blocked the effect of ATP on superoxide production, and the nonselective P2Y agonist MeSATP inhibited superoxide production. Nitric oxide synthase (NOS) inhibition by L-NAME blocked vascular relaxation and reduced superoxide production in LPS-treated animals. In the presence of L-NAME there was no ATP effect on superoxide production. A vascular reactivity study showed that ATP increased maximal relaxation in LPS-treated animals compared to controls. The presence of ATP induced increases in Akt and endothelial NOS phosphorylated proteins in the aorta of septic animals. ATP reduces superoxide release resulting in an improved vasorelaxant response. Sepsis may uncouple NOS to produce superoxide. We showed that ATP through Akt pathway phosphorylated endothelial NOS and “re-couples” NOS function.
Resumo:
Pneumonectomy is associated with high mortality and high rates of complications. Postpneumonectomy pulmonary edema is one of the leading causes of mortality. Little is known about its etiologic factors and its association with the inflammatory process. The purpose of the present study was to evaluate the role of pneumonectomy as a cause of pulmonary edema and its association with gas exchange, inflammation, nitric oxide synthase (NOS) expression and vasoconstriction. Forty-two non-specific pathogen-free Wistar rats were included in the study. Eleven animals died during or after the procedure, 21 were submitted to left pneumonectomy and 10 to sham operation. These animals were sacrificed after 48 or 72 h. Perivascular pulmonary edema was more intense in pneumonectomized rats at 72 h (P = 0.0131). Neutrophil density was lower after pneumonectomy in both groups (P = 0.0168). There was higher immunohistochemical expression of eNOS in the pneumonectomy group (P = 0.0208), but no statistically significant difference in the expression of iNOS. The lumen-wall ratio and pO2/FiO2 ratio did not differ between the operated and sham groups after pneumonectomy. Left pneumonectomy caused perivascular pulmonary edema with no elevation of immunohistochemical expression of iNOS or neutrophil density, suggesting the absence of correlation with the inflammatory process or oxidative stress. The increased expression of eNOS may suggest an intrinsic production of NO without signs of vascular reactivity.
Resumo:
In the present study, we investigated the effects of acute intracerebroventricular (icv) insulin administration on central mechanisms regulating urinary sodium excretion in simultaneously centrally NG-nitro-L-arginine methylester (L-NAME)-injected unanesthetized rats. Male Wistar-Hannover rats were randomly assigned to one of five groups: a) icv 0.15 M NaCl-injected rats (control, N = 10), b) icv dose-response (1.26, 12.6 and 126 ng/3 µL) insulin-injected rats (N = 10), c) rats icv injected with 60 µg L-NAME in combination with NaCl (N = 10) or d) with insulin (N = 10), and e) subcutaneously insulin-injected rats (N = 5). Centrally administered insulin produced an increase in urinary output of sodium (NaCl: 855.6 ± 85.1 Δ%/min; 126 ng insulin: 2055 ± 310.6 Δ%/min; P = 0.005) and potassium (NaCl: 460.4 ± 100 Δ%/min; 126 ng insulin: 669.2 ± 60.8 Δ%/min; P = 0.025). The urinary sodium excretion response to icv 126 ng insulin microinjection was significantly attenuated by combined administration of L-NAME (126 ng insulin: 1935 ± 258.3 Δ%/min; L-NAME + 126 ng insulin: 582.3 ± 69.6 Δ%/min; P = 0.01). Insulin-induced natriuresis occurred by increasing post-proximal sodium excretion, despite an unchanged glomerular filtration rate. Although the rationale for decreased urinary sodium excretion induced by combined icv L-NAME and insulin administration is unknown, it is tempting to suggest that perhaps one of the efferent signals triggered by insulin in the CNS may be nitrergic in nature.
Resumo:
Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.
Resumo:
7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.