79 resultados para Calcium silicate
Resumo:
Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ) is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine) sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension) was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.
Resumo:
Alleviation of Al rhizotoxicity by Ca and Mg can differ among species and genotypes. Root elongation of soybean [Glycine max (L.) Merr.] line N93-S-179 and cvs. Young and Ransom exposed to varying concentrations of Al, Ca and Mg were compared in two experiments using a vertically split root system. Roots extending from a surface compartment with limed soil grew for 12 days into a subsurface compartment with nutrient solution treatments maintained at pH 4.6 with either 0 or 15 µmol L-1 Al. Calcium and Mg concentrations in treatments ranging from 0 to 20 mmol L-1. Although an adequate supply of Mg was provided in the surface soil compartment for soybean top growth, an inclusion of Mg was necessary in the subsurface solutions to promote root elongation in both the presence and absence of Al. In the absence of Al in the subsurface solution, tap root length increased by 74 % and lateral root length tripled when Mg in the solutions was increased from 0 to either 2 or 10 mmol L-1. In the presence of 15 µmol L-1 Al, additions of 2 or 10 mmol L-1 Mg increased tap root length fourfold and lateral root length by a factor of 65. This high efficacy of Mg may have masked differences in Al tolerance between genotypes N93 and Young. Magnesium was more effective than Ca in alleviating Al rhizotoxicity, and its ameliorative properties could not be accounted for by estimated electrostatic changes in root membrane potential and Al3+ activity at the root surface. The physiological mechanisms of Mg alleviation of Al injury in roots, however, are not known.
Resumo:
The objective of this study was to extract and concentrate calcium oxalate (CaOx) crystals from plant leaves that form the above mentioned crystals. The chemical and physical studies of CaOx from plant to be performed depend on an adequate amount of the crystals. The plant used in this study was croton (Codiaeum variegatum). The leaves were ground in a heavy duty blender and sieved through a 0.20 mm sieve. The suspension obtained was suspended in distilled water. The crystals were concentrated at the bottom of a test tube. The supernatant must be washed until it is free of plant pigments and other organic substances. Biogenic CaOx crystals have well-defined and sharp peaks, indicating very high crystallinity. Moreover, the CaOx crystals were not damaged during the extraction procedure, as can be seen on the scanning electron microscope images. The porposed method can be considered efficient to extract and concentrate biogenic calcium oxalate.
Resumo:
This study proposes a method of direct and simultaneous determination of the amount of Ca2+ and Mg2+ present in soil extracts using a Calcium Ion-Selective Electrode and by Complexometric Titration (ISE-CT). The results were compared to those obtained by conventional analytical techniques of Complexometric Titration (CT) and Flame Atomic Absorption Spectrometry (FAAS). There were no significant differences in the determination of Ca2+ and Mg2+ in comparison with CT and FAAS, at a 95 % confidence level. Additionally, results of this method were more precise and accurate than of the Interlaboratorial Control (IC).
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
The objective of this work was to determine the effects of postharvest application of 1-methylcyclopropene (1-MCP) and two calcium salts, applied individually or combined, on firmness and visual quality of fresh-cut muskmelon stored in air, for 18 days. Two sets of fruits, one of them exposed to 1-MCP at 300 nL L-1, were cut into cubes, dipped in deionized water, or in 1% Ca solutions as CaCl2, or in calcium amino acid chelate (Ca-chelate), placed in clamshell containers, and stored in air at 5±1ºC and 90±5% RH, for 18 days. The assay was conducted using an entirely randomized design, with three replications, in a split plot array. Evaluation of visual appearance, color, flesh firmness, total soluble solids, titratable acidity, and pH was performed right after treatments, and every period of three days, up to eighteen days. Application of 1-MCP at 300 nL L-1, calcium chloride or Ca-chelate, or the combination 1-MCP and calcium, preserved initial freshness and reduced softening of the samples. Ca-chelate synergistically enhanced the effect of 1-MCP on firmness after nine days of storage, while calcium chloride improved firmness of the samples throughout storage. Ca-chelate may serve as an alternative for shelf life extension of cantaloupe fresh-cut muskmelon.
Resumo:
The objective of this work was to assess the relationship between macrofauna, mineralogy and exchangeable calcium and magnesium in Cerrado Oxisols under pasture. Twelve collection points were chosen in the Distrito Federal and in Formosa municipality, Goiás state, Brazil, representing four soil groups with varied levels of calcium + magnesium and kaolinite/(kaolinite + gibbsite) ratios. Soil macrofauna was collected in triplicate at each collection point, and identified at the level of taxonomic groups. Macrofauna density showed correlation with contents of kaolinite, gibbsite and exchangeable Ca + Mg in the soils. Mineralogy and exchangeable Ca + Mg had significant effects on taxonomic groups and relative density of soil macrofauna. The termites (Isoptera) were more abundant in soils with low exchangeable Ca + Mg; earthworms (Oligochaeta), in soils with high levels of kaolinite; and Hemiptera and Coleoptera larvae were more abundant in gibbsitic soils with higher contents of total carbon.
Resumo:
The objective of this work was to evaluate the genetic variability of common bean lines for cycle, weight of 100 grains, grain yield, cooking time, and grain calcium and iron concentrations. Twenty-four common bean lines were evaluated in two crop cycles (2010 and 2011). The ¯Z index was used for the selection of superior lines for most of the traits. The DF 06-19, DF 06-03, DF 06-17, DF 06-20, DF 06-11, DF 06-14, DF 06-01, DF 06-08, DF 06-22, and DF 06-04 lines showed high grain yield. All lines were of semi-early cycle and of fast cooking. The DF 06-08 and DF 06-23 lines showed high calcium concentration in grains (>1.4 g kg-1 dry matter - DM), and the DF 06-09, DF 06-03, DF 06-04, and DF 06-06 lines presented high iron concentration in grains (>0.95 g kg-1 DM) in the two crop cycles. The DF 06-09 and DF 06-03 carioca lines present high agronomic performance and high iron concentration in grains. The DF 06-17 and DF 06-08 black lines present high agronomic performance and high calcium concentration in grains. The selection of the DF 06-09, DF 06-03, DF 06-17, and DF 06-08 lines is recommended.
Resumo:
Abstract:The objective of this work was to evaluate the effects of prohexadione calcium concentrations on the growth and quality of eggplant (Solanum melongena) seedlings. The effects of prohexadione calcium concentrations of 0, 50, 100, or 150 mg L-1 on seedling growth parameters were evaluated in a greenhouse experiment. After the greenhouse experiment, the seedlings were transplanted to the field. During the field experiment, the number of days to flowering, plant height, number of fruits per plant, average fruit weight and yield were evaluated. Both experiments were carried out in a completely randomized design with four replicates. All prohexadione calcium concentrations significantly reduced shoot height and internode length, when compared to the control. The concentrations of 50, 100, and 150 mg L-1 prohexadione calcium reduced shoot height by 27, 32, and 38%, respectively. Prohexadione calcium treatments (except the one with 50 mg L-1) enhanced relative chlorophyll content of leaves in comparison to the control. There were no delays in flowering and no significant differences in number of fruits per plant among treatments with prohexadione calcium. The concentrations of 100 and 150 mg L-1 prohexadione calcium significantly reduced yield per plant and total fruit yield, whereas the concentration of 50 mg L-1 did not cause any change in yield compared to the control. The lowest prohexadione calcium concentration can be used to control excessive elongation of eggplant seedlings without yield loss.
Resumo:
Calcium sprays have normally improved both the quality and the storage life of apples throughout the world because Ca helps to prevent many fruit disorders and that taken up from the soil does not often reach the fruit in adequate amounts. Since the efficacy of Ca sprays varies according to soil, apple cultivar, and weather conditions, this study was carried out from 1998 to 2004, in the Southern of Brazil, in order to assess the effect of Ca sprays on the quality and storability of 'Gala' fruits. The experiment was set up in an orchard planted in 1988, on a density of 1234 trees/ha. Treatments consisted of 0, 4, 8, and 12 annual sprays of 0.5% CaCl2 regularly distributed 30 days after petal fall until one week before harvest. Fruits of the same size and maturity level were annually analyzed at harvest and after five months of conventional cold storage (-1ºC and 90-95% of RH). In five out of six seasons, fruits from all treatments were free of any physiological disorder, and Ca sprays had no effect on leaf composition and on any fruit attribute (soluble solids, titratable acidity, starch pattern index, flesh firmness, and concentrations of N, K, Ca and Mg). In the season of 2000/2001, however, when yield was 18 t ha-1 and fruits had an average weight of 175 g, the incidence of bitter pit plus lenticel blotch pit on stored fruits was 24% in the treatment with no calcium sprays and it decreased up to 2% in that with 12 sprays. Two seasons later, yield was also low (25 t ha-1) and fruits were large (168 g each), but they did not show any physiological disorder regardless of the number of Ca sprays. It seems that the incidence of Ca related disorders in 'Gala' apples grown on limed soils in Brazil with no excess of any nutrient only occurs on seasons with low crop yield, as a result of large fruits and a high leaf/fruit ratio, associated with some unknown environmental conditions.
Resumo:
Calcium phosphate compounds such as Hydroxyapatite (HAp) were prepared by hydrothermal synthesis with phycogenic CaCO3 as starting material. Material obtained was characterised by usual methods (XRD, FTIR, TG, N2-adsorption, SEM and EDX) in order to study its physical-chemical characteristics. The prepared HAp showed that it may be suitable for use as a biomaterial.
Resumo:
The aims of this study were to formulate calcium-alginate beads containing glibenclamide, characterize the resulting microparticles, evaluate the release characteristics of this type of delivery system in an in vitro dissolution test, and compare it with two commercially available trademarks (Daonil® and Glibetab®). We obtained glibenclamide loaded calcium-alginate beads with a rough surface and a particle size between 150-200 µm. For the in vitro dissolution test Daonil® at 45 min showed a Q > 70%, whereas Glibetab® and glibenclamide calcium-alginate beads a Q < 70%; in spite of that glibenclamide calcium-alginate beads showed significant release properties.