42 resultados para CELL ADHESION
Resumo:
The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.
Resumo:
Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.
Resumo:
Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.
Resumo:
Hypoxia inducible factor-1α (HIF-1α) is an important transcription factor, which plays a critical role in the formation of solid tumor and its microenviroment. The objective of the present study was to evaluate the expression and function of HIF-1α in human leukemia bone marrow stromal cells (BMSCs) and to identify the downstream targets of HIF-1α. HIF-1α expression was detected at both the RNA and protein levels using real-time PCR and immunohistochemistry, respectively. Vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) were detected in stromal cells by enzyme-linked immunosorbent assay. HIF-1α was blocked by constructing the lentiviral RNAi vector system and infecting the BMSCs. The Jurkat cell/BMSC co-cultured system was constructed by putting the two cells into the same suitable cultured media and conditions. Cell adhesion and secretion functions of stromal cells were evaluated after transfection with the lentiviral RNAi vector of HIF-1α. Increased HIF-1α mRNA and protein was detected in the nucleus of the acute myeloblastic and acute lymphoblastic leukemia compared with normal BMSCs. The lentiviral RANi vector for HIF-1α was successfully constructed and was applied to block the expression of HIF-1α. When HIF-1α of BMSCs was blocked, the expression of VEGF and SDF-1 secreted by stromal cells were decreased. When HIF-1α was blocked, the co-cultured Jurkat cell’s adhesion and migration functions were also decreased. Taken together, these results suggest that HIF-1α acts as an important transcription factor and can significantly affect the secretion and adhesion functions of leukemia BMSCs.
Resumo:
Notch signaling plays a vital role in tumorigenicity and tumor progression by regulating proliferation, invasion, and the tumor microenvironment. Previous research by our group indicated that Notch ligand Delta-like 1 (Dll1) is involved in angiogenesis in melanoma, and we noticed that it took a longer time to trypsinize Dll1-expressing B16 melanoma cells than the control cells. In this article, we extended our study to investigate the effects of Dll1 on tumor cell adhesion and metastasis. Dll1 overexpression activated Notch signaling in B16 tumor cells and significantly enhanced the adhering capacity of B16 tumor cells both in vitro and in vivo. B16-Dll1 cells also had a higher metastatic potential than their counterpart in the mouse model of lung metastasis. Along with increased Dll1 expression, N-cadherin, but not E-cadherin, was upregulated in B16-Dll1 cells. These data suggested that Notch ligand Dll1 may enhance the adhesion and metastasis of melanoma cells by upregulation of N-cadherin.
Resumo:
The injection of cercariae of Schistosoma mansoni into the peritoneal cavity of naive mice induces cell adhesion to these larvae, and this adherence sharply decreases when the infecting larva changes to schistosomule. This procedure was used to detect differences between schistosomules obtained in vivo and in vitro. Reinoculation of schistosomules obtained in vivo into the peritoneal cavity of mice did not trigger cell adhesion. In contrast, adherent cells were found in 4 and 24-hour-in vitro schistosomules. Our data on schistosomules obtained in vitro indicate that more than 24 hours are needed for complete remotion of molecules involved in the phenomenon of cell adhesion.
Resumo:
Treatment with dexamethasone (DMS) in the early phases of the experimental Schistosoma mansoni infection causes an indirect effect on the cercaria-schistosomulum transformation process. This is observed when naive albino mice are treated with that drug (50 mg/Kg, subcutaneously) and infected intraperitonealy 01 hour later with about 500 S. mansoni cercariae (LE strain). An inhibition in the host cell adhesion to the larvae, with a simultaneous delay in the cercaria-schistosomulum transformation, is observed. This effect is probably due to a blockade of the neutrophil migration to the peritoneal cavity of mice, by an impairment of the release of chemotactic substances. Such delay probably favors the killing of S. mansoni larvae, still in the transformation process, by the vertebrate host defenses, as the complement system.
Resumo:
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Resumo:
Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble che-moattractants signals and cell-cell adhesion molecules.
Resumo:
The human T-lymphotropic virus type-1 (HTLV-1) is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC) express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.
Resumo:
E-cadherin is a cell-cell adhesion molecule and low e-cadherin expression is related to invasiveness and may indicate a bad prognosis in mammary neoplasms. The expression of cell proliferation markers PCNA and especially Ki-67, has also proved to have a strong prognostic value in this tumor class. The expression of these markers was related to the clinical-pathological characteristics of 73 surgically removed mammary tumors in female dogs by immunohistochemistry. There was no statistical correlation between these markers and death by neoplasm, survival time and disease-free interval. However, the loss of e-cadherin expression and marked Ki-67 expression (p=0.016) were considered statistically significant for the diagnosis (p=0.032). When evaluated as independent factors, there was evidence of the relationship between the loss of e-cadherin expression and high PCNA expression with changes in the body status (divided into obese, normal and cachectic) of female dogs (p=0.030); there was also evidence of the relationship between pseudopregnancy and e-cadherin alone (p=0.021) and for ulceration and PCNA alone (p=0.035). The significant correlation between the markers expression and these well known prognostic factors used individually or in combination suggests their prognostic value in canine mammary tumors.
Resumo:
The serpin maspin, a tumor suppressor in breast cancer was described as an inhibitor of cell migration and inducer of cell adhesion between the basement membrane and extracellular matrix resulting in inhibition of tumor metastasis. In contrast, overexpression of maspin is correlated with poor prognosis in other types of cancer. Little is known about expression, regulation and function of maspin in canine mammary tumors. It was demonstrated in this study, a loss of maspin expression in malignant canine mammary cells compared with a pool of normal canine mammary tissue, analyzed by quantitative real-time PCR; weak maspin expression in malignant canine mammary tumors were observed by immunohistochemistry. It was also demonstrated that a correlation with nuclear maspin expression and a good prognosis. It is suggested that maspin could be used as a prognostic marker in canine mammary neoplasia.
Resumo:
Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM) for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group) in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC). These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.
Resumo:
Galectins are a family of evolutionarily conserved animal lectins, widely distributed from lower invertebrates to mammals. They share sequence and structure similarities in the carbohydrate recognition domain and specificity for polylactosamine-enriched glycoconjugates. In the last few years significant experimental data have been accumulated concerning their participation in different biological processes requiring carbohydrate recognition such as cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis and metastasis. In the present review we will discuss some exciting questions and advances in galectin research, highlighting the significance of these proteins in immunological processes and their implications in biomedical research, disease diagnosis and clinical intervention. Designing novel therapeutic strategies based on carbohydrate recognition will provide answers for the treatment of autoimmune disorders, inflammatory processes, allergic reactions and tumor spreading.
Resumo:
Many growth factors and their protein kinase receptors play a role in regulating vascular development. In addition, cell adhesion molecules, such as integrins and their ligands in the extracellular matrix, play important roles in the adhesion, migration, proliferation, survival and differentiation of the cells that form the vasculature. Some integrins are known to be regulated by angiogenic growth factors and studies with inhibitors of integrin functions and using strains of mice lacking specific integrins clearly implicate some of these molecules in vasculogenesis and angiogenesis. However, the data are incomplete and sometimes discordant and it is unclear how angiogenic growth factors and integrin-mediated adhesive events cooperate in the diverse cell biological processes involved in forming the vasculature. Consideration of the results suggests working hypotheses and raises questions for future research directions.