104 resultados para Body - Weight
Resumo:
INTRODUCTION: Self-reported weight and height were compared with direct measurements in order to evaluate the agreement between the two sources. METHOD: Data were obtained from a cross-sectional study on health status from a probabilistic sample of 1,183 employees of a bank, in Rio de Janeiro State, Brazil. Direct measurements were made of 322 employees. Differences between the two sources were evaluated using mean differences, limits of agreement and intraclass correlation coefficient (ICC). RESULTS AND CONCLUSIONS: Men and women tended to underestimate their weight while differences between self-reported and measured height were insignificant. Body mass index (BMI) mean differences were smaller than those observed for weight. ICC was over 0.98 for weight and 0.95 for BMI, expressing close agreement. Combining a graphical method with ICC may be useful in pilot studies to detect populational groups capable of providing reliable information on weight and height, thus minimizing resources needed for field work.
Resumo:
To study the influence of host age, inoculum size, and route of infection on Trypanosoma (Herpetosoma) rangeli, 12 lots of 6.0 g albino mice (NMRI strain) were infected up. with from 25x10¹ to 25x10(6) trypomastigotes/gram body weight harvested from LIT medium. The lower inocula produced low but persistent parasitemias, while the higher inocula produced high levels of parasitemia that fell quickly, suggesting the mobilization of resistance mechanisms. In other experiments, i.p. inoculation produced higher parasitemias than s.c. inoculation, and 6.0 g mice had higher parasitemias than 16.0 or 26.0 g mice. Thus, a standard methodology would seem to be necessary in the study of the various strains and/or species that may make up the T. rangeli complex.
Resumo:
Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI), triceps skinfold (TSF), arm muscle circumference (AMC), and bioimpedance (BIA) determinations of water, fat, lean body mass (LBM), and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3±6.2 years (seven males, one female). Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day) rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF), whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2±5.4% of body weight, and even on the 43rd day it was still measured as 19.7±3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5±2.6 kg/m²) and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. Conclusions: 1) All compartments diminished during fasting, but body fat was by far the most affected; 2) Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3) Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4) Patients were not morphologically malnourished after 43 days of fasting; however, the prognostic impact of other impairments was not considered in this analysis.
Resumo:
OBJECTVE: To objectively and critically assess body mass index and to propose alternatives for relating body weight and height that are evidence-based and that eliminate or reduce the limitations of the body mass index. METHODS: To analyze the relations involving weight and height, we used 2 databases as follows: 1) children and adolescents from Brazil, the United States, and Switzerland; and 2) 538 university students. We performed mathematical simulations with height data ranging from 115 to 190 cm and weight data ranging from 25 to 105 kg. We selected 3 methods to analyze the relation of weight and height as follows: body mass index - weight (kg)/height (m²); reciprocal of the ponderal index - height (cm)/weight1/3 (kg); and ectomorphy. Using the normal range from 20 to 25 kg/m² for the body mass index in the reference height of 170 cm, we identified the corresponding ranges of 41 to 44 cm/kg1/3 for the reciprocal of the ponderal index, and of 1.45 to 3.60 for ectomorphy. RESULTS: The mathematical simulations showed a strong association among the 3 methods with an absolute concordance to a height of 170 cm, but with a tendency towards discrepancy in the normal ranges, which had already been observed for the heights of 165 and 175 cm. This made the direct convertibility between the indices unfeasible. The reciprocal of the ponderal index and ectomorphy with their cut points comprised a larger age range in children and adolescents and a wider and more central range in the university students, both for the reported (current) and desired weights. CONCLUSION: The reciprocal of the ponderal index and ectomorphy are stronger and are more mathematically logical than body mass index; in addition, they may be applied with the same cut points for normal from the age of 5 ½ years on.
Resumo:
OBJECTIVE: To evaluate the level of satisfaction with body weight and the self-perception of the weight/height ratio and to verify the influence of the frequency of present and past physical activity on these variables. METHODS: Using questionnaires or interviews, we obtained height data, reported and desired weight, self-perception of the weight/height ratio, and the frequency of current physical activity in 844 adults (489 women). Of these, evaluated the frequency of physical activity during high school of 193 individuals,and we measured their height and weight. RESULTS: Less than 2/3 of the individuals had body mass index between 20 and 24.9 kg/m2. A tendency existed to overestimate height by less than 1 cm and to underestimate weight by less than 1kg. Desired weight was less than that reported (p<0.001), and only 20% were satisfied with their current weight. Only 42% of men and 25% of women exercised regularly. No association was found between the frequency of physical activity and the variables height, weight, and body mass index, and the level of satisfaction with current weight. CONCLUSION: Height and weight reported seem to be valid for epidemological studies, and great dissatisfaction with body weight and a distorted self-perception of height/weight ratio exists, especially in women, regardless of the frequency of physical activity.
Resumo:
In this study, I investigated the reproductive biology of fish species from the family Characidae of the order Characiformes. I also investigated the relationship between reproductive biology and body weight and interpreted this relationship in a phylogenetic context. The results of the present study contribute to the understanding of the evolution of the reproductive strategies present in the species of this family. Most larger characid species and other characiforms exhibit a reproductive pattern that is generally characterized by a short seasonal reproductive period that lasts one to three months, between September and April. This is accompanied by total spawning, an extremely high fecundity, and, in many species, a reproductive migration. Many species with lower fecundity exhibit some form of parental care. Although reduction in body size may represent an adaptive advantage, it may also require evolutionary responses to new biological problems that arise. In terms of reproduction, smaller species have a tendency to reduce the number of oocytes that they produce. Many small characids have a reproductive pattern similar to that of larger characiforms. On the other hand they may also exhibit a range of modifications that possibly relate to the decrease in body size and the consequent reduction in fecundity. Examples of changes in the general reproductive pattern include the following: reduction in the size of mature oocytes; increase in fecundity; production of several batches of oocytes; an extended reproductive period or even continuous reproduction that allows individuals to reproduce more than once a year; high growth rates; rapid recruitment of juveniles; presence of more than one reproductive cohort that increases the sexually active population; and multiple independent development of insemination as a reproductive strategy. These changes are possibly associated with adaptive pressures that are related to the reduction in body size. In addition, such reproductive characteristics or novelties may reflect the phylogenetic history of a given species.
Resumo:
Lipids and glycogen in fat body as well as the modifications in the wet weight of this organ were evaluated in an unfed insect, Dipetalogaster maximus, on day 5 after adult ecdysis (time 0) and during a 30-day period after ingestion of blood meal. Total lipids, high density lipophorin (HDLp), carbohydrates, total proteins and uric acid were determined in the hemolymph during the same period. Fat body wet weight was maximum on day 10 post-feeding and represented on day 30 only 42% of the maximum weight. Lipids stored in the fat body increased up to day 15 reaching 24% of the total weight of tissue. Glycogen was maximum on day 20, representing approximately 3% of the fat body weight. HDLp represented at all times between 17-24% of the total proteins, whose levels ranged between 35 and 47 mg/ml. Uric acid showed at 20, 25 and 30 days similar levels and significantly higher than the ones shown at days 10 and 15. Hemolymphatic lipids fluctuated during starvation between 3-4.4 mg/ml and carbohydrates showed a maximum on day 15 after a blood meal, decreasing up to 0.26 mg/ml on day 25. The above results suggest that during physiological events such as starvation, the availability of nutrients is affected, involving principally the fat body reserves
Resumo:
Obesity is one of the most frequent nutritional problems in companion animals and can lead to severe health problems in dogs and cats, such as cardiovascular diseases. This research aimed to evaluate the structural and functional cardiac changes after weight loss in obese dogs. Eighteen obese healthy dogs were assigned into three different groups, according with their initial body weight: Group I (dogs up to 15 kg), Group II (dogs weighing between 15.1 and 30 kg), and Group III (dogs weighing over 30 kg). The animals were submitted to a caloric restriction weight-loss program until they lose 15% of the body weight. The M-mode echocardiogram, electrocardiogram, and blood pressure evaluations were performed before the diet has started and after the dogs have reached the target weight. Data showed a decrease in left ventricular free wall thickness during diastole and systole in Group III, decrease in the systolic blood pressure in Group III, and also in the mean blood pressure in Group II. It was possible to conclude that the weight loss program can reverse structural cardiac changes such as left ventricle eccentric hypertrophy in dogs weighing more than 30 kg, and decrease the arterial blood pressure in obese dogs.
Resumo:
The present study deals with a species of enteropneust, Glossobalanus crozieri, focusing on two aspects of its respiration: a) oxygen consumption and body mass, and b) the influence of environmental oxygen tension on the respiratory rate. Preliminarily, the body water content was shown to be 85% of the whole body weight. The regression coefficient of the oxygen consumption on the wet body mass (0.578) seems to agree with the view that in enteropneusts respiration is mainly cutaneous. The respiratory rate was significantly reduced at O2 tensions from 76 mmHg downwards, suggesting conformity rather than regulation
Resumo:
Cancer patients present high mobilization of host protein, with a decrease in lean body mass and body fat depletion occurring in parallel to neoplastic growth. Since leucine is one of the principal amino acids used by skeletal muscle for energy, we investigated the changes in body composition of pregnant tumor-bearing rats after a leucine-supplemented diet. Sixty pregnant Wistar rats divided into six groups were fed a normal protein diet (18%, N) or a leucine-supplemented diet (3% L-leucine, L). The pregnant groups were: control (CN), Walker 256 carcinoma-bearing rats (WN), control rats pair-fed with tumor-bearing rats (pfN), leucine-supplemented (CL), leucine-supplemented tumor-bearing (WL), and leucine-supplemented rats pair-fed with tumor-bearing rats (pfL). At the end of pregnancy, all animals were sacrificed and body weight and tumor and fetal weight were determined. The carcasses were then analyzed for water, fat and total, collagen and non-collagen nitrogen content. Carcass weight was reduced in the WN, WL, pfN and pfL groups compared to control. The lean body mass and total carcass nitrogen were reduced in both tumor-bearing groups. Despite tumor growth and a decrease in fetal weight, there was a slight decrease in collagen (7%) and non-collagen nitrogen (8%) in the WL group compared with the WN group which showed a decrease of 8 and 12%, respectively. Although the WL group presented severe tumor growth effects, total carcass nitrogen and non-collagen nitrogen were particularly higher in this leucine-supplemented group compared to the WN group. These data suggest that the leucine-supplemented diet had a beneficial effect, probably attenuating body wasting.
Resumo:
The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (~70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 ± 1.1 vs 13.7 ± 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 ± 0.9 vs 9.7 ± 0.6 ml/100 g in control group, P<0.001) and total water (68.7 ± 3.9 vs 59.0 ± 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 ± 0.2 ml/100 g) than in the control group (3.6 ± 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 ± 0.3 ml/100 g) than in the control group (7.2 ± 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 ± 31 vs 773 ± 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
Our objective was to determine if automated peritoneal dialysis (APD) leads to changes in nutritional parameters of patients treated by continuous ambulatory peritoneal dialysis (CAPD). Twenty-six patients (15 males; 50.5 ± 14.3 years) were evaluated during CAPD while training for APD and after 3 and 6 months of APD. Body fat was assessed by the sum of skinfold thickness and the other body compartments were assessed by bioelectrical impedance. During the 6-month follow-up, 12 patients gained more than 1 kg (GW group), 8 patients lost more than 1 kg (LW group), and 6 patients maintained body weight (MW group). Except for length on dialysis that was longer for the LW group compared with the GW group, no other differences were found between the groups at baseline. After 6 months on APD, the LW group had a reduction in body fat (24.5 ± 7.7 vs 22.1 ± 7.3 kg; P = 0.01), body cell mass (22.6 ± 6.2 vs 21.6 ± 5.8 kg, P = 0.02) and phase angle (5.4 ± 0.9 vs 5.1 ± 0.8 degrees, P = 0.004). In the GW group, body fat (25 ± 7.6 vs 27.2 ± 7.6 kg, P = 0.001) and body cell mass (20.1 ± 3.9 vs 20.8 ± 4.0 kg, P = 0.05) were increased. In the present study, different patterns of change in body composition were found. The length of previous dialysis treatment seems to be the most important factor in determining these nutritional modifications.
Resumo:
This study evaluated the effects of chronic treadmill training on body mass gain and visceral fat accumulation in overfed rats. Overfeeding was induced by reducing the litter size to 3 male pups per mother during the suckling period. The litter size of control rats was adjusted to 10 male pups per mother. Seven weeks after birth overfed and normally fed rats were selected and assigned to a sedentary protocol or to a low-intensity treadmill training protocol (60 min, 5 times/week, for 9 weeks). Four groups (overfed sedentary, N = 23; normally fed sedentary, N = 32; overfed exercised, N = 18, and normally fed exercised, N = 18) were evaluated at 18 weeks. Data are reported as means ± SEM. Initial body weight was similar in control and overfed rats [8.0 ± 0.2 g (N = 42) vs 8.0 ± 0.1 g (N = 50); P > 0.05] and body weight gain during the suckling period was higher in the overfed rats (30.6 ± 0.9 vs 23.1 ± 0.3 g; P < 0.05). Exercise attenuated the body weight gain of overfed compared to sedentary rats (505 ± 14 vs 537 ± 12 g; P < 0.05). The sedentary overfed rats showed higher visceral fat weight compared to normally fed animals (31.22 ± 2.08 vs 21.94 ± 1.76 g; P < 0.05). Exercise reduced visceral fat by 36.5% in normally fed rats and by 35.7% in overfed rats. Exercise attenuated obesity in overfed rats and induced an important reduction of visceral fat.
Resumo:
Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.