18 resultados para Bid Premium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

If cytotoxin-associated gene A (CagA) status affects the response rates of therapy, then it may be possible to predict Helicobacter pylori eradication rates. We aimed to evaluate the response to eradication treatment of H. pylori infection in CagA-positive and CagA-negative patients. A total of 184 patients (93 males, 91 females, mean age 42.6 ± 12.8 years) with H. pylori-positive chronic gastritis were studied. Subjects underwent a gastroscopy and biopsy specimens were taken from the gastric antrum, body, and fundus. Before the eradication therapy was given all patients were tested for CagA, TNF-alpha and gastrin levels. They were then prescribed lansoprazole (30 mg bid), clarithromycin (500 mg bid), and amoxicillin (1.0 mg bid) for one week. On the 8th week a second endoscopy was performed and further biopsy specimens were obtained from the same sites as in the initial endoscopy. One hundred and twenty-seven patients (69.1%) were found to be CagA positive and 57 patients (30.9%) were CagA negative. The total eradication rate was 82.6%. In the CagA-positive group this rate was 87.4%, and in the CagA-negative group it was 71.9% (P = 0.019). TNF-alpha levels were higher in the CagA-positive than in the CagA-negative group (P = 0.001). However, gastrin levels were not different between groups (P = 0.421). Our findings revealed that CagA-negative status might be a risk factor for failure of H. pylori triple therapies. The CagA pathogenicity island gives a growth advantage to H. pylori strains and has been associated with an increase in the inflammatory response at the gastric mucosal level. These properties could make CagA-positive H. pylori strains more susceptible to antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper attempts to explain why the Brazilian inter-bank interest rate is so high compared with rates practiced by other emerging economies. The interplay between the markets for bank reserves and government securities feeds into the inter-bank rate the risk premium of the Brazilian public debt.