61 resultados para BIOLOGICAL MODELS
Resumo:
A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 µg; confidence limits 2.65 and 4.2) > streptomycin (5.68 µg; 3.76 and 8.57) = neomycin (9.22 µg; 6.98 and 12.17) > magnesium (19.49 µg; 11.46 and 33.13). The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 µg; confidence limits 1.46 and 2.9) > streptomycin (47.86 µg; 26.3 and 87.1) = neomycin (83.17 µg; 51.6 and 133.9). The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.
Resumo:
Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.
Resumo:
Immunoglobulin E (IgE) and mast cells are believed to play important roles in allergic inflammation. However, their contributions to the pathogenesis of human asthma have not been clearly established. Significant progress has been made recently in our understanding of airway inflammation and airway hyperresponsiveness through studies of murine models of asthma and genetically engineered mice. Some of the studies have provided significant insights into the role of IgE and mast cells in the allergic airway response. In these models mice are immunized systemically with soluble protein antigens and then receive an antigen challenge through the airways. Bronchoalveolar lavage fluid from mice with allergic airway inflammation contains significant amounts of IgE. The IgE can capture the antigen presented to the airways and the immune complexes so formed can augment allergic airway response in a high-affinity IgE receptor (FcepsilonRI)-dependent manner. Previously, there were conflicting reports regarding the role of mast cells in murine models of asthma, based on studies of mast cell-deficient mice. More recent studies have suggested that the extent to which mast cells contribute to murine models of asthma depends on the experimental conditions employed to generate the airway response. This conclusion was further supported by studies using FcepsilonRI-deficient mice. Therefore, IgE-dependent activation of mast cells plays an important role in the development of allergic airway inflammation and airway hyperresponsiveness in mice under specific conditions. The murine models used should be of value for testing inhibitors of IgE or mast cells for the development of therapeutic agents for human asthma.
Resumo:
The relationship between anxiety-related behaviors and voluntary ethanol intake was examined in two pairs of rat lines by the oral ethanol self-administration procedure. Floripa high (H) and low (L) rats selectively bred for contrasting anxiety responses in the open-field test, and two inbred strains, spontaneously hypertensive rats (SHR) and Lewis rats which are known to differ significantly when submitted to several behavioral tests of anxiety/emotionality, were used (9-10 animals/line/sex). No differences in the choice of ethanol solutions (2%, days 1-4, and 4%, days 5-8, respectively) in a 2-bottle paradigm were detected between Floripa H and L rats (1.94 ± 0.37 vs 1.61 ± 0.37 g/kg for ethanol intake on day 8 by the Floripa H and L rat lines, respectively). Contrary to expectations, the less anxious SHR rats consumed significantly more ethanol than Lewis rats (respective intake of 2.30 ± 0.45 and 0.72 ± 0.33 g/kg on day 8) which are known to be both addiction-prone and highly anxious. Regardless of strain, female rats consumed more ethanol than males (approximately 46%). The results showed no relationship between high anxiety and voluntary intake of ethanol for Floripa H and L rats. A negative association between these two variables, however, was found for SHR and Lewis rat strains. Data from the literature regarding the association between anxiety and alcohol intake in animal models are not conclusive, but the present results indicate that factors other than increased inborn anxiety probably lead to the individual differences in ethanol drinking behavior.
Resumo:
The serious neuropsychological repercussions of hepatic encephalopathy have led to the creation of several experimental models in order to better understand the pathogenesis of the disease. In the present investigation, two possible causes of hepatic encephalopathy, cholestasis and portal hypertension, were chosen to study the behavioral impairments caused by the disease using an object recognition task. This working memory test is based on a paradigm of spontaneous delayed non-matching to sample and was performed 60 days after surgery. Male Wistar rats (225-250 g) were divided into three groups: two experimental groups, microsurgical cholestasis (N = 20) and extrahepatic portal hypertension (N = 20), and a control group (N = 20). A mild alteration of the recognition memory occurred in rats with cholestasis compared to control rats and portal hypertensive rats. The latter group showed the poorest performance on the basis of the behavioral indexes tested. In particular, only the control group spent significantly more time exploring novel objects compared to familiar ones (P < 0.001). In addition, the portal hypertension group spent the shortest time exploring both the novel and familiar objects (P < 0.001). These results suggest that the existence of portosystemic collateral circulation per se may be responsible for subclinical encephalopathy.
Resumo:
Phytotherapies have offered alternative sources of therapy for migraine and gained much importance in prophylactic treatment. Sapindus trifoliatus is a medium-sized deciduous tree growing wild in south India that belongs to the family Sapindaceae. The pericarp is reported for various medicinal properties. A thick aqueous solution of the pericarp is used for the treatment of hemicrania, hysteria or epilepsy in folklore medicine. We have investigated the antihyperalgesic effects of the lyophilized aqueous extract of S. trifoliatus in animal models predictive of experimental migraine models using morphine withdrawal-induced hyperalgesia on the hot-plate test and on 0.3% acetic acid-induced abdominal constrictions in adult male Swiss albino mice. The extract significantly (N = 10, P < 0.05) increased the licking latency in the hot-plate test when administered ip at 10 mg/kg (6.70 ± 0.39 s in saline control vs 18.76 ± 0.96 s in S. trifoliatus-treated animals) and significantly (N = 10, P < 0.001) reduced the abdominal constrictions when administered ip at 2 and 10 mg/kg (40.20 ± 1.36 in saline control vs 30.20 ± 1.33 and 23.00 ± 0.98 for 2 and 10 mg/kg, ip, respectively, in S. trifoliatus-treated animals). Furthermore, when administered ip at 20 and 100 mg/kg, the extract significantly (N = 10, P < 0.05) inhibited the apomorphine-induced climbing behavior in mice (climbing duration 15.75 ± 5.0 min for saline control vs 11.4 ± 1.28 and 3.9 ± 1.71 min for 20 and 100 mg/kg, respectively, in S. trifoliatus-treated animals). In receptor radioligand-binding studies, the extract exhibited affinity towards D2 receptors. The findings suggest that dopamine D2 antagonism could be the mechanism involved in the antihyperalgesic activity of the aqueous extract of S. trifoliatus.
Resumo:
Erythrina velutina (EV) and Erythrina mulungu (EM), popularly used in Brazil as tranquilizing agents, were studied. The effects of acute and chronic oral treatment with a water:alcohol extract of EV (7:3, plant grounded stem bark; acute = 100, 200, 400 mg/kg; chronic = 50, 100, 200 mg/kg) were evaluated in rats (N = 11-12) submitted to the elevated T-maze (for avoidance and escape measurements) model of anxiety. This model was selected for its presumed capacity to elicit specific subtypes of anxiety disorders recognized in clinical practice: avoidance has been related to generalized anxiety and escape to panic. Additionally, animals were treated with the same doses of EV and EM (water:alcohol 7:3, inflorescence extract) and submitted to the forced swim test for the evaluation of antidepressant activity (N = 7-10). Both treatment regimens with EV impaired elevated T-maze avoidance latencies, without altering escape, in a way similar to the reference drug diazepam (avoidance 1, mean ± SEM, acute study: 131.1 ± 45.5 (control), 9.0 ± 3.3 (diazepam), 12.7 ± 2.9 (200 mg/kg), 28.8 ± 15.3 (400 mg/kg); chronic study: 131.7 ± 46.9 (control), 35.8 ± 29.7 (diazepam), 24.4 ± 10.4 (50 mg/kg), 29.7 ± 11.5 (200 mg/kg)). Neither EV nor EM altered measurements performed in the forced swim test, in contrast to the reference drug imipramine that significantly decreased immobility time after chronic treatment. These results were not due to motor alterations since no significant effects were detected in an open field. These observations suggest that EV exerts anxiolytic-like effects on a specific subset of defensive behaviors which have been associated with generalized anxiety disorder.
Resumo:
There is a great concern in the literature for the development of neuroprotectant drugs to treat Parkinson's disease. Since anesthetic drugs have hyperpolarizing properties, they can possibly act as neuroprotectants. In the present study, we have investigated the neuroprotective effect of a mixture of ketamine (85 mg/kg) and xylazine (3 mg/kg) (K/X) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA) rat models of Parkinson's disease. The bilateral infusion of MPTP (100 µg/side) or 6-OHDA (10 µg/side) into the substantia nigra pars compacta of adult male Wistar rats under thiopental anesthesia caused a modest (~67%) or severe (~91%) loss of tyrosine hydroxylase-immunostained cells, respectively. On the other hand, an apparent neuroprotective effect was observed when the rats were anesthetized with K/X, infused 5 min before surgery. This treatment caused loss of only 33% of the nigral tyrosine hydroxylase-immunostained cells due to the MPTP infusion and 51% due to the 6-OHDA infusion. This neuroprotective effect of K/X was also suggested by a less severe reduction of striatal dopamine levels in animals treated with these neurotoxins. In the working memory version of the Morris water maze task, both MPTP- and 6-OHDA-lesioned animals spent nearly 10 s longer to find the hidden platform in the groups where the neurotoxins were infused under thiopental anesthesia, compared to control animals. This amnestic effect was not observed in rats infused with the neurotoxins under K/X anesthesia. These results suggest that drugs with a pharmacological profile similar to that of K/X may be useful to delay the progression of Parkinson's disease.
Resumo:
Disorders of the lipid metabolism may play a role in the genesis of abdominal aorta aneurysm. The present study examined the intravascular catabolism of chylomicrons, the lipoproteins that carry the dietary lipids absorbed by the intestine in the circulation in patients with abdominal aorta aneurysm. Thirteen male patients (72 ± 5 years) with abdominal aorta aneurysm with normal plasma lipid profile and 13 healthy male control subjects (73 ± 5 years) participated in the study. The method of chylomicron-like emulsions was used to evaluate this metabolism. The emulsion labeled with 14C-cholesteryl oleate and ³H-triolein was injected intravenously in both groups. Blood samples were taken at regular intervals over 60 min to determine the decay curves. The fractional clearance rate (FCR) of the radioactive labels was calculated by compartmental analysis. The FCR of the emulsion with ³H-triolein was smaller in the aortic aneurysm patients than in controls (0.025 ± 0.017 vs 0.039 ± 0.019 min-1; P < 0.05), but the FCR of14C-cholesteryl oleate of both groups did not differ. In conclusion, as indicated by the triglyceride FCR, chylomicron lipolysis is diminished in male patients with aortic aneurysm, whereas the remnant removal which is traced by the cholesteryl oleate FCR is not altered. The results suggest that defects in the chylomicron metabolism may represent a risk factor for development of abdominal aortic aneurysm.
Resumo:
Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy) even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause) is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.
Resumo:
Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 ± 1.1, 12.7 ± 1.8, 8.4 ± 0.8, and 11.1 ± 3.3 s) and mechanical threshold in response to von Frey filaments (459 ± 82.8, 447.5 ± 91.7, 320.1 ± 120, 126.43 ± 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.
Resumo:
Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.