33 resultados para Automated Guideway Transit (AGT)
Resumo:
The application of automated correlation optimized warping (ACOW) to the correction of retention time shift in the chromatographic fingerprints of Radix Puerariae thomsonii (RPT) was investigated. Twenty-seven samples were extracted from 9 batches of RPT products. The fingerprints of the 27 samples were established by the HPLC method. Because there is a retention time shift in the established fingerprints, the quality of these samples cannot be correctly evaluated by using similarity estimation and principal component analysis (PCA). Thus, the ACOW method was used to align these fingerprints. In the ACOW procedure, the warping parameters, which have a significant influence on the alignment result, were optimized by an automated algorithm. After correcting the retention time shift, the quality of these RPT samples was correctly evaluated by similarity estimation and PCA. It is demonstrated that ACOW is a practical method for aligning the chromatographic fingerprints of RPT. The combination of ACOW, similarity estimation, and PCA is shown to be a promising method for evaluating the quality of Traditional Chinese Medicine.
Resumo:
The aim of this paper was to evaluate the automated acclimatization effects during pre-milking of cows on thermal conditioning, physiology, milk production and cost-benefit of the automated adiabatic evaporative cooling system (AECS). The treatments 20; 30; 40 min and control consisted of exposure time of pre-milking cows to the automated AECS. Sixteen cows were used with an average daily milk yield of 19 kg, distributed in a 4 x 4 Latin square design. The Tukey's test (P<0.05) was used to compare the means. The environmental variables, dry bulb temperature (DBT, ºC) and relative humidity (RH, %), were recorded every minute, which allowed the determination of the system efficiency through the Temperature and Humidity Index (THI). The respiratory rate (RR), rectal temperature (RT) and temperature of the coat (TC) were measured before and after the acclimatization. The 40 min treatment kept the environmental variables and the comfort indexes within recommended limits. The physiological variables (RR, RT and TC) were lower in the 40 min treatment and reflected positively on milk production, which increased 3.66% compared to the control treatment. The system was profitable, having a 43 days return on investment and a monthly revenue increase of R$ 1,992.67.
Resumo:
The aim of this study was to develop a an automated bench top electronic penetrometer (ABEP) that allows performing tests with high rate of data acquisition (up to 19,600 Hz) and with variation of the displacement velocity and of the base area of cone penetration. The mechanical components of the ABEP are: a supporting structure, stepper motor, velocity reducer, double nut ball screw and six penetration probes. The electronic components of ABEP are: a "driver" to control rotation and displacement, power supply, three load cells, two software programs for running and storing data, and a data acquisition module. This penetrometer presented in compact size, portable and in 32 validation tests it proved easy to operate, and showed high resolution, high velocity in reliability in data collection. During the validation tests the equipment met the objectives, because the test results showed that the ABEP could use different sizes of cones, allowed work at different velocities, showed for velocity and displacement, were only 1.3% and 0.7%, respectively, at the highest velocity (30 mm s-1) and 1% and 0.9%, respectively for the lowest velocity (0.1 mm s-1).
Resumo:
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery
Resumo:
We evaluated the effects of fundectomy and pyloroplasty on the delay of gastric emptying (GE) and gastrointestinal (GI) transit of liquid due to blood volume (BV) expansion in awake rats. Male Wistar rats (N = 76, 180-250 g) were first submitted to fundectomy (N = 26), Heinecke-Mikulicz pyloroplasty (N = 25) or SHAM laparotomy (N = 25). After 6 days, the left external jugular vein was cannulated and the animals were fasted for 24 h with water ad libitum. The test meal was administered intragastrically (1.5 ml of a phenol red solution, 0.5 mg/ml in 5% glucose) to normovolemic control animals and to animals submitted to BV expansion (Ringer-bicarbonate, iv infusion, 1 ml/min, volume up to 5% body weight). BV expansion decreased GE and GI transit rates in SHAM laparotomized animals by 52 and 35.9% (P<0.05). Fundectomy increased GE and GI transit rates by 61.1 and 67.7% (P<0.05) and prevented the effect of expansion on GE but not on GI transit (13.9% reduction, P<0.05). Pyloroplasty also increased GE and GI transit rates by 33.9 and 44.8% (P<0.05) but did not prevent the effect of expansion on GE or GI transit (50.7 and 21.1% reduction, P<0.05). Subdiaphragmatic vagotomy blocked the effect of expansion on GE and GI transit in both SHAM laparotomized animals and animals submitted to pyloroplasty. In conclusion 1) the proximal stomach is involved in the GE delay due to BV expansion but is not essential for the establishment of a delay in GI transit, which suggests the activation of intestinal resistances, 2) pyloric modulation was not apparent, and 3) vagal pathways are involved
Resumo:
The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.
Resumo:
Manometric and pharmacological tests have shown that motor abnormalities may occur in the non-dilated colons of chagasic patients. In order to investigate the presence of abnormalities of colonic function in constipated patients with Chagas disease (ChC) without megaesophagus or megacolon, studies of total and segmental colonic transit time with radiopaque markers were performed on 15 ChC patients, 27 healthy volunteers and 17 patients with idiopathic constipation (IC). The values obtained for the control group were similar to those reported in the literature (total colonic time: 34.1 ± 15.6 h; right colon: 9.9 ± 7.3 h; left colon: 10.8 ± 10 h, and rectosigmoid: 12.6 ± 9.9 h). Colonic transit time data permitted us to divide both IC and ChC patients into groups with normal transit and those with slow colonic transit. Colonic inertia was detected in 41% of IC patients and in 13% of ChC patients; left colon isolated stasis (hindgut dysfunction) was detected in 12% of IC patients and 7% of ChC patients, and outlet obstruction was detected in 6% of IC patients and 7% of ChC patients. There were no significant differences in total or segmental colonic transit times between slow transit IC and slow transit ChC patients. In conclusion, an impairment of colonic motility was detected in about 30% of constipated patients with Chagas disease without megaesophagus or megacolon. This subgroup of patients presented no distinctive clinical feature or pattern of colonic dysmotility when compared to patients with slow transit idiopathic constipation.
Resumo:
The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.
Resumo:
The objective of the present study was to evaluate associations between fiber intake, colonic transit time and stool frequency. Thirty-eight patients aged 4 to 14 years were submitted to alimentary evaluation and to measurement of colonic transit time. The median fiber intake of the total sample was age + 10.3 g/day. Only 18.4% of the subjects presented a daily dietary fiber intake below the levels recommended by the American Health Foundation. In this group, the median left colonic transit time was shorter than in the group with higher dietary fiber intake (11 vs 17 h, P = 0.067). The correlation between stool frequency and colonic transit time was negative and weak for left colon (r = -0.3, P = 0.04), and negative and moderate for rectosigmoid and total colon (r = -0.5, P<0.001 and r = -0.5, P<0.001, respectively). The stool frequency was lower in the group with slow transit time (0.8 vs 2.3 per week, P = 0.014). In conclusion, most patients with chronic functional constipation had adequate dietary fiber intake. The negative correlation between stool frequency and colonic transit time increased progressively from proximal segments to distal segments of the colon. Patients with normal and prolonged colonic transit time differ in terms of stool frequency.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
Gastrointestinal motility disturbances during endotoxemia are probably caused by lipopolysaccharide (LPS)-induced factors: candidates include nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1ß, and interleukin-6. Flow cytometry was used to determine the effects of LPS and these factors on gastric emptying (evaluated indirectly by determining percent gastric retention; %GR) and gastrointestinal transit (GIT) in male BALB/c mice (23-28 g). NO (300 µg/mouse, N = 8) and TNF-alpha (2 µg/mouse, N = 7) increased (P < 0.01) GR and delayed GIT, mimicking the effect of LPS (50 µg/mouse). During early endotoxemia (1.5 h after LPS), inhibition of inducible NO synthase (iNOS) by a selective inhibitor, 1400 W (150 µg/mouse, N = 11), but not antibody neutralization of TNF-alpha (200 µg/mouse, N = 11), reversed the increase of GR (%GR 78.8 ± 3.3 vs 47.2 ± 7.5%) and the delay of GIT (geometric center 3.7 ± 0.4 vs 5.6 ± 0.2). During late endotoxemia (8 h after LPS), both iNOS inhibition (N = 9) and TNF-alpha neutralization (N = 9) reversed the increase of GR (%GR 33.7 ± 2.0 vs 19.1 ± 2.6% (1400 W) and 20.1 ± 2.0% (anti-TNF-alpha)), but only TNF-alpha neutralization reversed the delay of GIT (geometric center 3.9 ± 0.4 vs 5.9 ± 0.2). These findings suggest that iNOS, but not TNF-alpha, is associated with delayed gastric emptying and GIT during early endotoxemia and that during late endotoxemia, both factors are associated with delayed gastric emptying, but only TNF-alpha is associated with delayed GIT.
Resumo:
Sildenafil slows down the gastric emptying of a liquid test meal in awake rats and inhibits the contractility of intestinal tissue strips. We studied the acute effects of sildenafil on in vivo intestinal transit in rats. Fasted, male albino rats (180-220 g, N = 44) were treated (0.2 mL, iv) with sildenafil (4 mg/kg) or vehicle (0.01 N HCl). Ten minutes later they were fed a liquid test meal (99m technetium-labeled saline) injected directly into the duodenum. Twenty, 30 or 40 min after feeding, the rats were killed and transit throughout the gastrointestinal tract was evaluated by progression of the radiotracer using the geometric center method. The effect of sildenafil on mean arterial pressure (MAP) was monitored in a separate group of rats (N = 14). Data (medians within interquartile ranges) were compared by the Mann-Whitney U-test. The location of the geometric center was significantly more distal in vehicle-treated than in sildenafil-treated rats at 20, 30, and 40 min after test meal instillation (3.3 (3.0-3.6) vs 2.9 (2.7-3.1); 3.8 (3.4-4.0) vs 2.9 (2.5-3.1), and 4.3 (3.9-4.5) vs 3.4 (3.2-3.7), respectively; P < 0.05). MAP was unchanged in vehicle-treated rats but decreased by 25% (P < 0.05) within 10 min after sildenafil injection. In conclusion, besides transiently decreasing MAP, sildenafil delays the intestinal transit of a liquid test meal in awake rats.
Resumo:
Our objective was to determine if automated peritoneal dialysis (APD) leads to changes in nutritional parameters of patients treated by continuous ambulatory peritoneal dialysis (CAPD). Twenty-six patients (15 males; 50.5 ± 14.3 years) were evaluated during CAPD while training for APD and after 3 and 6 months of APD. Body fat was assessed by the sum of skinfold thickness and the other body compartments were assessed by bioelectrical impedance. During the 6-month follow-up, 12 patients gained more than 1 kg (GW group), 8 patients lost more than 1 kg (LW group), and 6 patients maintained body weight (MW group). Except for length on dialysis that was longer for the LW group compared with the GW group, no other differences were found between the groups at baseline. After 6 months on APD, the LW group had a reduction in body fat (24.5 ± 7.7 vs 22.1 ± 7.3 kg; P = 0.01), body cell mass (22.6 ± 6.2 vs 21.6 ± 5.8 kg, P = 0.02) and phase angle (5.4 ± 0.9 vs 5.1 ± 0.8 degrees, P = 0.004). In the GW group, body fat (25 ± 7.6 vs 27.2 ± 7.6 kg, P = 0.001) and body cell mass (20.1 ± 3.9 vs 20.8 ± 4.0 kg, P = 0.05) were increased. In the present study, different patterns of change in body composition were found. The length of previous dialysis treatment seems to be the most important factor in determining these nutritional modifications.
Resumo:
We evaluated the effects of vincristine on the gastrointestinal (GI) motility of awake rats and correlated them with the course of vincristine-induced peripheral neuropathy. Vincristine or saline was injected into the tail vein of male Wistar rats (180-250 g) on alternate days: 50 µg/kg (5 doses, N = 10), 100 µg/kg (2, 3, 4 and 5 doses, N = 49) or 150 µg/kg (1, 2, or 5 doses, N = 37). Weight and stool output were measured daily for each animal. One day after completing the vincristine treatment, the animals were fasted for 24 h, gavage-fed with a test meal and sacrificed 10 min later to measure gastric emptying (GE), GI transit and colon weight. Sensory peripheral neuropathy was evaluated by hot plate testing. Chronic vincristine treatments with total cumulative doses of at least 250 µg/kg significantly decreased GE by 31-59% and GI transit by 55-93%. The effect of 5 doses of vincristine (150 µg/kg) on GE did not persist for more than 1 week. Colon weight increased after 2 and 5 doses of vincristine (150 µg/kg). Fecal output decreased up to 48 h after the fifth dose of vincristine (150 µg/kg). Vincristine decreased the heat pain threshold 1 day after 5 doses of 50-100 µg/kg or after 3-5 doses of 150 µg/kg. This effect lasted for at least 2 weeks after the fifth dose. Chronic intravenous vincristine treatment delayed GE and GI transit of liquid. This effect correlated with the peak increase in colon weight but not with the pain threshold changes.
Resumo:
Abstract The growing interest in the usage of dietary fiber in food has caused the need to provide precise tools for describing its physical properties. This research examined two dietary fibers from oats and beets, respectively, in variable particle sizes. The application of automated static image analysis for describing the hydration properties and particle size distribution of dietary fiber was analyzed. Conventional tests for water holding capacity (WHC) were conducted. The particles were measured at two points: dry and after water soaking. The most significant water holding capacity (7.00 g water/g solid) was achieved by the smaller sized oat fiber. Conversely, the water holding capacity was highest (4.20 g water/g solid) in larger sized beet fiber. There was evidence for water absorption increasing with a decrease in particle size in regards to the same fiber source. Very strong correlations were drawn between particle shape parameters, such as fiber length, straightness, width and hydration properties measured conventionally. The regression analysis provided the opportunity to estimate whether the automated static image analysis method could be an efficient tool in describing the hydration properties of dietary fiber. The application of the method was validated using mathematical model which was verified in comparison to conventional WHC measurement results.