32 resultados para Anodic potentials
Resumo:
Hematological parameters, intraerythrocytic phosphates, hemoglobin, and whole blood Bohr effect of the South American armored catfish Hoplostenum littorale were studied during different seasons of the year. In addition, the degree of dependence on air breathing was determined for this species. The hematological parameters presented seasonal variations, which were not correlated to oxygen, temperature, and water level oscillations. Five anodic hemoglobin fractions were detected in starch gel electrophoresis. In addition to ATP, GTP and Fe-GTP being detected, 2,3-DPG was also detected in red blood cells of H. littorale. The latter is an intraerythrocytic phosphate characteristic to red blood cells of mammalians. The increased production of 2,3-DPG could be associated with decreasing Hb-O2 affinity and both features could be related to environmental temperature increase. Whole blood Bohr effect was influenced by water temperature. This study confirms H. littorale to be continuous and not obligate air breather, under all dissolved oxygen level conditions.
Resumo:
OBJECTIVE: To demonstrate the feasibility and safety of simultaneous catheterization and mapping of the 4 pulmonary veins for ablation of atrial fibrillation. METHODS: Ten patients, 8 with paroxysmal atrial fibrillation and 2 with persistent atrial fibrillation, refractory to at least 2 antiarrhythmic drugs and without structural cardiopathy, were consecutively studied. Through the transseptal insertion of 2 long sheaths, 4 pulmonary veins were simultaneously catheterized with octapolar microcatheters. After identification of arrhythmogenic foci radiofrequency was applied under angiographic or ultrasonographic control. RESULTS: During 17 procedures, 40 pulmonary veins were mapped, 16 of which had local ectopic activity, related or not with the triggering of atrial fibrillation paroxysms. At the end of each procedure, suppression of arrhythmias was obtained in 8 patients, and elimination of pulmonary vein potentials was accomplished in 4. During the clinical follow-up of 9.6±3 months, 7 patients remained in sinus rhythm, 5 of whom were using antiarrhythmic drugs that had previously been ineffective. None of the patients had pulmonary hypertension or evidence of stenosis in the pulmonary veins. CONCLUSION: Selective and simultaneous catheterization of the 4 pulmonary veins with microcatheters for simultaneous recording of their electrical activity is a feasible and safe procedure that may help ablation of atrial fibrillation.
Resumo:
In modern society, thiamine deficiency (TD) remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells.
Resumo:
Working with low voltage microscope (R.C.A., EMC-2, of 30KV.) the authors verified that parlodion and Formvar films are quickly destroyed by intense heating under the electron beam. They have tried to employ oxide films, as Al2O3 and SiO, more resistant to heat. Al2O3 films are prepared by anodic oxidation of thin aluminium sheets, under 8 to 10 volts in a 3% ammonium citrate solution and subsequent aluminium dissolution in a O.25% HgCl2 solution. These films are very suitable when prepared with highly pure aluminium of extremely homogeneous surface. Best results were obtained with SiO films, evaporated in high vacuum over Parlodion films mounted on metallic grids. Employing 1 or 1.5 mg of SiOm highly homogeneous and resistant films are obtained, having little inferior transparence than the Parlodion ones. Pure SiO films (1.5 mg) are obtained by elimination of the Parlodion under slow heating until 250°C; they are greatly transparent but little resistant to water, thus beeing indicated in dry preparations. For particles which deposite in a chain-like form around thin fibers, the authors employ the mounting on Parlodion fibers, obtained by heating Parlodion films on microscope grids about 190°C.
Resumo:
In Egypt the "national schistosomiasis control program" was formulated to control transmission by reduction of prevalence and intensity of current infections, and thereby achieve an acceptable level of schistosomiasis disease control. The program was implemented foremost in Middle Egypt (1977) and Upper Egypt (1980), collectively extending 800 km alongside of the River Nile and accommodate about 10.5 million people. Schistosoma haematobium has been essentially the prevailing species infection in both areas. The strategy of control entailed both area-wide mollusciciding with niclosamide, and selective population chemotherapy with metrifonate. Evaluation in 1986 showed that prevalence dropped from pre-control 29.4% in Middle Egypt and 26.3% in Upper Egypt to 6% and 7.8% respectively, together with a remarkable drop of infections among children. Also mean intensity attained low levels consistent of low grade infections. It is evident therefore that in these areas where an enhancement of schistosomiasis infections had been anticipated the employment of the twofold strategy effected a state of low-prevalence/low-intensity signifying a lowered reservoir of infection and a substantial interference with the potentials of transmission.
Resumo:
Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB) accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag)- that measured changes in free potentials induced by the presence of exogeneously added sulphide) and SRB concentration (enumerated by a culturing method). E (Ag) was characterized under a variety of conditions andwas found to be relatively immune to possible interference resulting from aeration of media or from the psence of iron corrosion products. The method offers a simple, rapid, and effective means of diagnosing biocorrosive processes prior to their control.
Resumo:
Groups of 10 and 20 first instar larvae of Peckia chrysostoma (Wiedemann, 1830) were combined in a proteic source media with groups of the same number of first instar larvae of Adiscochaeta ingens (Walker, 1849) under the environmental conditions of Rio de Janeiro, RJ, Brasil. P. chrysostoma and A. ingens obtained average competitive potentials of 94.0 ± 2.0% and 31.0 ± 5.0% respectively. In the second experiment, larvae of P. chrysostoma were introduced approximately 15 hr after the introduction of A. ingens larvae (whose majority had already passed to the second instar) in the media. The corresponding average competitive potential of P. chrysostoma (82.0 ± 2.0%) was decreased when compared to the first experiment, but still greater than that of A. ingens (64.5 ± 9.5%). The competitive potential of A. ingens, however, increased significatively, demonstrating the influence of its previous colonization in the media for achieving a higher viability. In both experiments the competitive potential of P. chrysostoma was greater and similar to observations cited in the literature. Control-groups of each species were observed, individually, for the comparison. The mean value obtained for P. chrysostoma was 94.0 ± 3.7% (0.0% [experiment 1] and only 12.8% [experiment 2] greater than the average competitive factor). For A. ingens the average was 86.0 ± 7.3% (64.0% [experiment 1] and 25.0% [experiment 2] greater than average competitive factor).
Resumo:
Recently, our group determined the relationship between serum CAA levels and fecal egg counts in two foci with very intense Schistosoma mansoni transmission: Maniema (Zaire), an area endemic for S. mansoni since several decades, and Ndombo (Senegal), where transmission has only been established since a few years. The objective was to study and compare age-related worm load and worm fecundity patterns in these two different endemic settings. Here, we will summarize the most important findings and conclusions of this study.
Resumo:
Despite effective chemotherapy, schistosomiasis remains the second largest public health problem in the developing world. Currently, vaccination is the new strategy for schistosomiasis control. The presence of common antigenic fractions between Schistosoma mansoni and its intermediate host provides a source for the preparation of a proper vaccine. The objective of this paper is to evaluate the nucleoprotein extracted from either susceptible or resistant snails to protect against schistosomiasis. The vaccination schedule consisted of a subcutaneous injection of 50 µg protein of each antigen followed by another inoculation 15 days later. Analyses of marker enzymes for different cell organelles [succinate dehydrogenase, lactate dehydrogenase (LDH), glucose-6-phosphatase, acid phosphatase and 5'-nucleotidase] were carried out. Energetic parameters (ATP, ADP, AMP, phosphate potentials, inorganic phosphate, amino acids and LDH isoenzymes) were also investigated. The work was extended to record worm and ova counts, oogram determination in the liver and intestine and the histopathological pattern of the liver. The nucleoprotein of susceptible snails showed reduction in worm and ova counts by 70.96% and 51.31%, respectively, whereas the nucleoprotein of resistant snails showed reductions of 9.67% and 16.77%, respectively. In conclusion, we found that the nucleoprotein of susceptible snails was more effective in protecting against schistosomiasis.
Resumo:
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.
Resumo:
Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.
Resumo:
Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.
Resumo:
The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.