31 resultados para Aluminum zinc magnesium copper alloy
Resumo:
The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.
Resumo:
Two flavors of cookies were developed (savory and peppery) containing a mixture of plants such as "guaraná" (Paullinia cupana) and "catuaba" (Anemopaegma mirandum). A test of acceptance and buying intention was applied to 48 consumers through a structured hedonic scale of 9 points. Afterwards, the centesimal compositions of these cookies were obtained as well as their total contents of copper, iron, and zinc through the method of atomic absorption spectrometry with flame. Sensorial tests indicated that the cookies presented good acceptance with potential to sensorial growth. The amount of fibers in the samples, 3 g/100 g, surpassed expectations since the product was not invented with the intention of being a source of this nutrient. The total amount of copper (0.41 mg.100 g-1), iron (4.50 mg.100 g-1), and zinc (1.32 mg.100 g-1) was considered good. The cookies produced can be considered good sources of fibers, copper, iron, and zinc. Furthermore, they are beneficial to people affected by celiac disease because they lack gluten. They also present functional properties. In addition, the medicinal plants used are considered energetic.
Resumo:
OBJECTIVE To evaluate the impact of consuming ultra-processed foods on the micronutrient content of the Brazilian population’s diet.METHODS This cross-sectional study was performed using data on individual food consumption from a module of the 2008-2009 Brazilian Household Budget Survey. A representative sample of the Brazilian population aged 10 years or over was assessed (n = 32,898). Food consumption data were collected through two 24-hour food records. Linear regression models were used to assess the association between the nutrient content of the diet and the quintiles of ultra-processed food consumption – crude and adjusted for family incomeper capita.RESULTS Mean daily energy intake per capita was 1,866 kcal, with 69.5% coming from natural or minimally processed foods, 9.0% from processed foods and 21.5% from ultra-processed foods. For sixteen out of the seventeen evaluated micronutrients, their content was lower in the fraction of the diet composed of ultra-processed foods compared with the fraction of the diet composed of natural or minimally processed foods. The content of 10 micronutrients in ultra-processed foods did not reach half the content level observed in the natural or minimally processed foods. The higher consumption of ultra-processed foods was inversely and significantly associated with the content of vitamins B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The reverse situation was only observed for calcium, thiamin and riboflavin.CONCLUSIONS The findings of this study highlight that reducing the consumption of ultra-processed foods is a natural way to promote healthy eating in Brazil and, therefore, is in line with the recommendations made by the Guia Alimentar para a População Brasileira (Dietary Guidelines for the Brazilian Population) to avoid these foods.
Resumo:
WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.
Resumo:
Seven cultivars of Phaseolus vulgaris L. were grown in nutrient solution in the presence and absence of aluminum. Da ta obtained herewith allowed for the following conclusions to be drawn: (1) plant height, root lenght and total dry weight decreased with increase of aluminum levels in the nutrient solution; (2) aluminum concentration in plant tissue increased with higher levels of aluminum in the substrate; decreases pf calcium and magnesium concentration in the dry matter in the presence of higher aluminum concentration in the nutrient solution were observed.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
In this paper it is proposed an indirect method to evaluate the corrosion rate of an aluminum and zinc alloy in alkaline solution by using a well-known device for collecting gases over water. The hydrogen gas formation, a corrosion product, is monitored at different time intervals and associated with the alloy mass loss. It has been suggested that the students should work in groups, which may make feasible the social interaction among them and that results discussion may be done collectively under a professor orientation. This proposal may propitiate the learning of terminology and involved concepts as well as contribute to a better understanding of corrosion phenomena that occur in their everyday life.
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.
Resumo:
A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS) determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1). The preconcentration factor is 100 for (200 mL) solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The true spinach (Spinacia oleracea) does not grow well in warm climates and for that reason is not commercialized in Brazil. Instead, a spinach substitute (Tetragonia expansa), originally from New Zealand, is widely used in the country. There is scant information on the mineral profile and none on the soluble mineral fraction of this vegetable. The solubility of a mineral is one of the important factors for its absorption. For this reason, the calcium, magnesium, iron, manganese, copper, zinc, potassium, and sodium soluble fractions in the raw spinach substitute were determined and the effect of blanching times on the solubility of these minerals was investigated. Blanching times of 1, 5, and 15 minutes were employed. The magnesium, manganese, potassium, and sodium soluble fractions increased sizably with shorter blanching time. Longer blanching time (15 minutes) caused large losses of minerals. The soluble mineral fractions can contribute poorly to diet in terms of potassium, magnesium, manganese, and zinc. The spinach substitute cannot be considered a dietary source of calcium, iron and copper due to the insolubility of these minerals in the vegetable, possibly caused by the large oxalate content.
Resumo:
Sugar cane juice containing 12% (w.w -1) of total reducing sugars and 0.0 to 5.0 mmol of nickel L-1, with pH ranging from 3.5 to 6.5, was inoculated with Fleischmanns yeast (Saccharomyces cerevisiae) (10% w.w -1). Six hours after fermentation, the yeasts cellular viability and trehalose content were evaluated. The resulting must was centrifuged and the raw yeast was analyzed by atomic absorption spectroscopy to evaluate the intracellular levels of calcium, copper, iron, magnesium, manganese, nickel, phosphorus, potassium, sulfur and zinc. The intracellular levels of iron, magnesium and calcium were affected and the yeasts susceptibility to nickel was enhanced by the decrease in pH. The yeasts growth was not affected by nickel at high pH, but the toxic effects of nickel were potentiated at low pH.
Resumo:
In order to assure that the use of cerrado fruits occur in a sustainable way, studies to investigate their characteristics are extremely relevant. In this context, the present study aims to describe some chemical parameters of pequi fruits picked in three municipalities in southwestern Goiás State (Jataí, Rio Verde, and Serranópolis). In each city, two populations of pequi trees - pequizeiros, denominated areas, were selected. In each area, eight trees were selected for the fruit to be picked. The contents of phosphorus, potassium, calcium, magnesium, nitrogen, zinc, and ether extract were determined in the samples. The results demonstrate differences between the chemical characteristics studied for the fruits picked in different areas, which does not seem to vary in a significant way. Comparing the contents obtained in the present study with those required as human daily supply, further studies are recommended aiming at using the pequi fruit as a complementary alternative source of magnesium, manganese, and copper.
Resumo:
The objective of this work was to develop a recommendation for the chemical peeling of pequi fruit and characterize the flour obtained from the external mesocarp of "Pequizeiro", pequi tree (Caryocar brasiliense Camb.). The technology applied to obtain the external mesocarp pequi flour included the epicarp removal with NaOH solution. The Response Surface Method was used to optimize the chemical peeling process by applying the Central Composite Rotatable Design, with eleven trials including three replicates at the central point, varying the NaOH aqueous solution concentration and fruit immersion time. The mass loss was evaluated through the analysis of variance and using bi and three dimensional graphs. The chemical characteristics of the external mesocarp pequi flour evaluated were: moisture content, ashes, proteins, lipids, total carbohydrates, dietary fiber, and some minerals. The best combination for an efficient removal of the fruit peel with the lowest mass loss was reached with 7.05 minutes of immersion in a 5.08 g.L-1 NaOH aqueous solution. This study indicated that the external mesocarp pequi flour is a food source rich in dietary fiber, carbohydrates, ashes, magnesium, calcium, manganese, and copper, but it is poor in lipids, zinc, and iron.
Resumo:
In Brazil, street markets and vegetable distributors discard vegetable leaves and stems, including those of carrot (Dacus carota L.). Seeking to reduce the waste of vegetable parts, this study characterized chemically the leaves of organically grown carrot in three stages of development to determine the best time for their removal and consumption as food. The leaves were dehydrated in an oven at 70 °C for 43 hours and analyzed for chemical composition, antioxidant activity, chlorophyll content, fatty acid composition, and also calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu) contents. The analyses indicated 100 days of development as the ideal stage for the removal and consumption of carrot leaves with good antioxidant activity requiring only 63.78 ± 0.5 mg.L-1 methanol leaf extract to inhibit 50% of the concentration of the free radical DPPH (2,2-diphenyl-1picrilidrazil), and total protein and alpha-linolenic acid (18:3 n-3/LNA) contents of 18.23% ± 2.8 and 876.55 ± 20.62 mg.100 g-1 of dry matter, respectively.