17 resultados para Algorithm clustering
Resumo:
Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher’s linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKβ, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.
Resumo:
The distribution of psychiatric disorders and of chronic medical illnesses was studied in a population-based sample to determine whether these conditions co-occur in the same individual. A representative sample (N = 1464) of adults living in households was assessed by the Composite International Diagnostic Interview, version 1.1, as part of the São Paulo Epidemiological Catchment Area Study. The association of sociodemographic variables and psychological symptoms regarding medical illness multimorbidity (8 lifetime somatic conditions) and psychiatric multimorbidity (15 lifetime psychiatric disorders) was determined by negative binomial regression. A total of 1785 chronic medical conditions and 1163 psychiatric conditions were detected in the population concentrated in 34.1 and 20% of respondents, respectively. Subjects reporting more psychiatric disorders had more medical illnesses. Characteristics such as age range (35-59 years, risk ratio (RR) = 1.3, and more than 60 years, RR = 1.7), being separated (RR = 1.2), being a student (protective effect, RR = 0.7), being of low educational level (RR = 1.2) and being psychologically distressed (RR = 1.1) were determinants of medical conditions. Age (35-59 years, RR = 1.2, and more than 60 years, RR = 0.5), being retired (RR = 2.5), and being psychologically distressed (females, RR = 1.5, and males, RR = 1.4) were determinants of psychiatric disorders. In conclusion, psychological distress and some sociodemographic features such as age, marital status, occupational status, educational level, and gender are associated with psychiatric and medical multimorbidity. The distribution of both types of morbidity suggests the need of integrating mental health into general clinical settings.