244 resultados para Alfalfa seedling bioassay
Resumo:
ABSTRACT The macaw palm [Acrocomia aculeata (Jacq.) Lood. ex Mart] has been domesticated to subsidize biodiesel production programs in Brazil. However, little is known about the seedling production of this species. This study aimed to evaluate substrate mixtures, limestone and phosphorus rates for substrate amendment and topdressing frequency in macaw palm seedlings. Three trials were conducted in a greenhouse up to six months of nursery cultivation. Trial 1: determination of percent mineral and organic fractions of seven substrate mixtures. Trial 2: evaluation of four limerates for soil amendment versus four phosphorus rates. Trial 3: evaluation of N, K and Mg topdressing frequency. Significant differences were found in the three trials for most of the variables (plant height, leaf number, shoot dry mass, root dry mass, vigor and bulb diameter). The main results obtained were as follow: Trial1 - the best seedling growth was observed in substrates with at least 25% organic matter. Trial2 -lime rates ranging from 0.50 to 1.25 kg associated with 3 to 4 kg of single superphosphate per m3 of substrate provided the best seedling growth. Trial 3 - topdressing fertilization provided better development of seedlings regardless of frequency.
Resumo:
The high seedlings quality is essential for deployment of homogeneous orchards. This study evaluated the baruzeiro (Dipteryx alata Vog) seedlings formation on different substrates within protected environments. It was used substrates with100% of cattle manure; 100% of cassava stems; 100% of vermiculite; 50% of cattle manure + 50% of cassava stems; 50% of cattle manure + 50% of vermiculite; 50% of cassava stems + 50% of vermiculite; and + ⅓ of cattle manure + ⅓ of cassava stems + ⅓ of vermiculite. These substrates were tested in protected areas: greenhouse; black shade net of 50% shading; and aluminized thermo-reflective screen of 50% shading. A completely randomized experimental design with five replicates of four plants was adopted. Initially, data were submitted to analysis of individual variance of the substrates, in each environment of cultivation, then performing the evaluation of the residual mean square and the analysis of these environments together for comparison. The best substrate for baruzeiro seedlings was pure vermiculite. The substrates with 100% of manure and the substrate with 33.33% of the mixed studied materials can be used for seedlings formation. The environment with screen can be indicated for the production of baruzeiro seedlings, since it gave vigor to the seedlings.
Resumo:
The aim of this study was to investigate the occurrence of Toxoplasma gondii and compare the results obtained in the Modified Agglutination Test (MAT), Polimerase Chain Reaction (PCR) and bioassay in mice. In order to accomplish this, 40 free-range chickens from eight farms in neighboring areas to the Pantanal in Nhecolândia, Mato Grosso do Sul, were euthanized and blood samples, brain and heart were collected. The occurrence of anti-T. gondii antibodies found in chickens was 67.5% (27 samples), considering as a cutoff point the dilution 1:5. Among the samples analyzed, 7 (25.9%) were positive in the dilution 1:5, 3 (11.1%) in 1:10, 2 (7.4%) in 1:20, 3 (11.1%) in 1:320, 1 ( 3.7%) in 1:640, 3 (11.1%) in 1:1280, 2 (7.4%) in 1:2560, 4 (14.8%) in 1:5120 and 2 (7.4%) in 1:10.240. From the mixture of tissue samples (brain and heart) from the chickens analyzed, 16 (40%) presented electrophoretic bands compatible with T. gondii by PCR (gene B1). In the comparison of techniques, 59.26% positivity in PCR was revealed among animals that were seropositive in MAT (cutoff 1:5). From 141 inoculated mice, six (4.44%) died of acute toxoplasmosis between 15 and 23 days after inoculation. Surviving mice were sacrificed at 74 days after inoculation, and a total of 28 cysts were found in the brains of 10 distinct groups. From the seropositive hens, 27 bioassays were performed and 11 (40.7%) isolates were obtained. A greater number of isolations happened in mice that were inoculated with tissues from chickens that had high titers for anti-T. gondii antibodies. Chronic infection in mice was observed in nine groups (33.3%) from five different properties. Among the surviving mice, 25.6% were positive for T. gondii in MAT (1:25). From mice positive in PCR, 87.5% were also positive in MAT. Among the PCR-negative mice, 5.2% were positive for T. gondii in MAT. It can be concluded through this study that the occurrence of infecton by T. gondii in the rural properties studied was high, that PCR directed to gene B1 does not confirm the viability of the parasite, but it can be used as a screening method for the selection of chickens infected by T. gondii, that the animals with titer greater than 10 must be prioritized for the selection of animals for bioassay, since for them, the chances of isolating the parasite are greater and that seroconversion in experimentally infected mice is not a good indicator for isolating the agent.
Resumo:
Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase)-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.
Resumo:
Laboratory and greenhouse experiments were conducted to determine the effects of drought and salinity stress, temperature, pH and planting depth on yellow sweet clover (Melilotus officinalis) germination and emergence. Base, optimum and ceiling germination temperatures were estimated as 0, 18.47 and 34.60 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited at a potential of -1 MPa, but it was tolerant to salinity. Salinity stress up to 90 mM had no effect over the M. officinalis seed germination, but the germination decreased by increasing the salt concentration. The drought and salinity required for 50% inhibition of maximum germination were 207 mM and -0.49 MPa, respectively. High percentage of seed germination (>92%) was observed at pH = 5-6 and decreased to 80% at acidic medium (pH 4) and to 42% at alkaline medium (pH 9) pH. Maximum seedling emergence occurred when the seeds were placed at 2 cm depth and decreased when increasing the depth of planting; no seed emerged from depths of 10 cm.
Resumo:
Soil incorporation of crop residues can lead to weed suppression by posing allelopathic and physical effects. Allelopathic potential of the crops sorghum, sunflower, brassica applied as sole or in combination for horse purslane (Trianthema portulacastrum) suppression was evaluated in a pot investigation. Chopped crop residues alone and in combination were incorporated at 6 g kg-1 soil (12 t ha-1), and a weedy check was maintained. Germination traits time to start germination; time to 50% emergence, mean emergence time, emergence index and final germination percentage were negatively influenced by residue incorporation. Crop residues also exerted a pronounced negative influence on the shoot and root length of horse purslane. Significant suppression in leaf and root score and leaf area per plant was also observed. A combination of sorghum and sunflower residues accounted for maximum (71%) seedling mortality. Soil incorporation of allelopathic crop residues can be employed for horse purslane management.
Resumo:
Decomposing wheat (Triticum aestivum) straw and rhizosphere-infested soil were evaluated for their suppressive activity against horse purslane (Trianthema portulacastrum), a noxious summer weed in Pakistan. Two separate pot studies were carried out. Wheat straw was incorporated at 4, 6 and 8 g kg-1 soil five days before the sowing of horse purslane. Pots without straw incorporation were maintained as control. In a second study, soil was taken from 15 and 30 cm depths from a previously cropped wheat field immediately after its harvest and was used as growing medium. Soil from an intentionally uncropped area of the same field was used as control. Suppressive activity was measured in terms of germination dynamics, seedling growth, and biochemical attributes such as chlorophyll contents, total soluble phenolics, soluble protein and antioxidant enzymes. Germination, seedling growth, chlorophyll contents and soluble protein of horse purslane were all negatively influenced. Higher phenolics and enhanced activities of antioxidant enzymes were noticed in response to wheat residues incorporation and its rhizosphere soil. Both studies established that the phytotoxic influence of wheat straw and wheat-infested rhizosphere soil on horse purslane can further be exploited for horse purslane management as a sustainable approach.
Resumo:
Abutilon theophrasti and Barnyardgrass (Echinochloa crus-galli) are major weeds that affect cropping systems worldwide. Laboratory and greenhouse studies were conducted to determine the effects of temperature, pH, water and salinity stress, and planting depth on seed germination and seedling emergence of Velvetleaf and Barnyardgrass. For Velvetleaf, the base, optimum and ceiling germination temperatures were estimated as 5, 35 and 48 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited by a potential of -0.6 MPa, but it was tolerant to salinity. Salinity stress up to 45 mM had no effect on the germination of Velvetleaf, but germination decreased with increasing salt concentration. Drought and salinity levels for 50% inhibition of maximum germination were -0.3 MPa and 110 mM, respectively. Seed germination of Velvetleaf was tolerant to a wide range of pH levels. For Barnyardgrass, the base, optimum and ceiling germination temperatures were estimated as 5, 38 and 45 ºC, respectively. Seed germination was tolerant to drought stress and completely inhibited by a potential of -1.0 MPa. Salinity stress up to 250 mM had no effect on seed germination. Drought and salinity levels for 50% inhibition of maximum germination were -0.5 MPa and 307 mM, respectively. A high percentage of seed germination was observed at pH=5 and decreased to 61.5% at acidic medium (pH 4) and to 11% at alkaline medium (pH 9). Maximum seedling emergence of Velvetleaf and Barnyardgrass occurred when the seeds were placed on the surface of the soil or at a depth of 1 cm.
Resumo:
Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03). The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.
Resumo:
Experiments were conducted to evaluate the allelopathic influence of Rhynchosia capitata on germination and seedling growth of mungbean (Vigna radiate) along with identification of the phytotoxic substances responsible for this activity. Water extracts of root, shoot, leaf, fruit and whole plant were prepared by soaking them in water in a ratio of 1:20 (w/v) for 24 h. All the extracts affected germination and seedling growth of mungbean, but higher inhibition was seen with R. capitata leaf water extracts. A linear decrease in the germination characteristics of mungbean was observed with the decrease in the concentration of leaf extract from 5% to 1%. The soil-incorporated residues (1-4% w/w) of R. capitata stimulated the growth of root and hypocotyl at low concentrations, while it inhibited their growth at higher concentrations. Rhynchosia capitata soil-incorporated residues (4% w/w) significantly reduced the seedling vigour index of mungbean in addition to their significant effect on total germination. A significant amount of water-soluble phenolic acids were found in R. capitata plant extracts. The content of total phenolic acids was higher in the leaf extract compared to that of the stem, fruit or root extracts. Two phenolic acids including vanillic acid and 4‑(hydroxymethyl) benzoic acid were found in R. capitata leaf extracts.
Resumo:
The resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone herbicides is a worldwide problem in paddy fields. A rapid diagnosis is required for the selection of adequate prevention and control practices. The objectives of this study were to develop expedite bioassays to identify the resistance to imidazolinone herbicides in barnyardgrass and to evaluate the efficacy of alternative herbicides for the post-emergence control of resistant biotypes. Three experiments were conducted to develop methods for diagnosis of resistance to imazethapyr and imazapyr + imazapic in barnyardgrass at the seed, seedling and tiller stages, and to carry out a pot experiment to determine the efficacy of six herbicides applied at post-emergence in 13 biotypes of barnyardgrass resistant to imidazolinones. The seed soaking bioassay was not able to differentiate the resistant and susceptible biotypes. The resistance of barnyardgrass to imidazolinones was effectively discriminated in the seedlings and tiller bioassays seven days after incubation at the concentrations of 0.001 and 0.0001 mM, respectively, for both imazethapyr and imazapyr + imazapic. The biotypes identified as resistant to imidazolinones showed different patterns of susceptibility to penoxsulam, bispyribac-sodium and pyrazosulfuron-ethyl, and were all controlled with profoxydim and cyhalofop-butyl. The seedling and tiller bioassays are effective in the diagnosis of barnyardgrass resistance to imidazolinone herbicides, providing an on-season opportunity to identify the need to use alternative herbicides to be applied at post-emergence for the control of the resistant biotypes.
Resumo:
Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.
Resumo:
This study aimed to determine the selectivity of herbicides applied in pre- and post-emergence for alfalfa crops. Three separate experiments were carried out under greenhouse conditions. The first experiment was arranged in a completely randomized design with three replications in a 4 x 11 + 1 factorial scheme , with eleven herbicides (bentazon, chlorimuron-ethyl, fomesafen, fluazifop-p-butyl, saflufenacil, imazethapyr, clethodim, nicosulfuron, imazaquin, haloxyfop-methyl and MSMA), four doses of each herbicide (0.5 D, 0.75 D, 1.0 D and 1.25 D, where D = recommended dose), plus an untreated control. The products were applied to alfalfa plants at the stage of 4 to 5 leaf pairs. In the second experiment, the effect of pre-emergent herbicides on early alfalfa development was observed through a completely randomized design with five replications in a 3 x 4 x 2 factorial scheme, with three herbicides (hexazinone, atrazine + simazine, S-metolachlor), four doses (0.5 D, 0.75 D, 1.0 D and 1.25 D), and two types of soil texture (loamy and clay soil), plus an untreated control. The third experiment evaluated the action of atrazine, 2,550 g ha-1; clomazone - 600 g ha-1; diclosulam - 25 g ha-1; diuron+hexazinone - 936 + 264 g ha-1 and diuron+hexazinone +sulfometuron - 1,386 + 391 + 33.35 g ha-1 on alfalfa sown at different times after herbicide application. The effects of the treatments on alfalfa were evaluated according to visual phytotoxicity symptoms, plant height, and biomass of roots and shoots. Among the herbicides applied at post-emergence, imazethapyr, clethodim, haloxyfop-p-methyl and MSMA were selective for alfalfa, while among those applied at pre-emergence, none were selective, regardless of soil texture. The results of the third experiment showed that the herbicides diclosulam, hexazinone + diuron and atrazine caused less toxicity in alfalfa plants.
Resumo:
A laboratory study was conducted to investigate the allelopathic effect of aqueous extracts of plant parts of Alternanthera philoxeroides and A. sessilis and soil incorporated residues on germination and seedling growth of rice (Oryza sativa). Aqueous extracts prepared from different plant parts of Alternanthera species delayed rice germination. Alternanthera philoxeroides and A. sessilis inhibited rice germination by 9-100% and 4-49%, respectively. Germination of rice seeds was reduced with increasing concentration of aqueous leaf extracts of both weed species. Early seedling growth (root and shoot lengths) and seedling vigor index were significantly reduced by 5% aqueous leaf extract compared with distilled water treated control. Germination, root and shoot lengths, root and shoot dry weights and seedling vigor index of rice were drastically reduced by 3 and 4% in residue infested soil compared with residue free soil. The inhibitory effect of A. philoxeroides in terms of germination and seedling growth of rice was greater than that of A. sessilis. Five percent aqueous leaf extract and 4% residue infested soil of A. philoxeroides caused complete failure of rice seed germination. Alternanthera philoxeroides contained water soluble phenolics, namely 4 hydroxy-3-methoxy benzoic acid (16.19 mg L-1) and m-coumaric acid (1.48 mg L-1), whereas Alternanthera sessilis was rich in chlorogenic acid (17.85 mg L-1), gallic acid (11.03 mg L-1) and vanillic acid (9.88 mg L-1). The study indicates that the allelopathic potential of Alternanthera species may play an important role in enhancing the invasiveness of these species and may suppress rice plants in the vicinity.
Resumo:
Biosynthesis and subsequent release of allelochemicals by a plant into the environment is supposed to be influenced by its growing conditions. To ascertain what will be the allelopathic action of plant parts and rhizospheric soils of parthenium (Parthenium hysterophorus) growing at various farm locations with varied growing conditions, germination and seedling growth of maize hybrid (DK 6142) were assayed by sowing its seeds in petri plates lined with filter paper and pots filled with soil. Minimum germination percentage (30.0%), germination index (2.01), germination energy (36.3), seedling length (3.3 cm), seedling biomass (10 mg) and seedling vigor index (99.0) of maize were observed in leaf extract followed by fruit and whole plant extracts of parthenium growing near the field border. Rhizospheric soil collected underneath parthenium growing near a water channel caused maximum reductions in germination index (30.8%), germination energy (40.6%), seedling length (32.6%), seedling biomass (35.1%) and seedling vigor index (34.3%) of maize compared with that soil without any vegetation. Phytotoxic inhibitory effects of both parthenium plant and rhizospheric soil were more pronounced on maize root than its shoot growth. The higher suppressive action against germination and seedling growth of maize was probably due to higher total phenolic concentrations (6678.2 and 2549.0 mg L-1) and presence of phenolic compounds viz., gallic, caffeic, 4-hydroxy-3-methoxy benzoic, p-coumaric and m-coumaric acids; and ferulic, vanillic, syringic and m-coumaric acids in aqueous leaf extract of parthenium uprooted near the field border and its rhizospheric soil collected near a water channel, respectively.