95 resultados para Aerobic metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to evaluate the effect of a high-carbohydrate diet (HC) and a high-protein diet (HP) on the metabolism of the crayfish Parastacus brasiliensis (Von Martens, 1869), collected in different seasons and maintained in the laboratory for 15 days. Crayfish were collected monthly from January 2002 to January 2004 at São Francisco de Paula, Southern Brazil, in Guarapirá stream. In the laboratory, the animals were kept submerged in aquariums under controlled conditions. They were fed ad libitum, for 15 days with either a HC or HP diet. At the end of this period, haemolymph samples were collected, as were hepatopancreas, gills, and abdominal muscle that were removed for determination of glycogen, free glucose, lipids, and triglycerides. The haemolymph samples were used for determination of glucose, proteins, lipids, and triglycerides. Statistical analysis (ANOVA) revealed significant seasonal differences in biochemical composition in crayfish maintained on HC or HP diets. Independent of the diets offered to the animals and the controlled conditions for 15 days, the indications of seasonality were unchanged. The observed changes seemed to be related to the reproductive period. Moreover, the HC diet increased all energy reserves in adult parastacids, which may aid in reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The appearance of meta-hemoglobin in pneumococcus cultures in blood media must be consequential to the formation of hydogen peroxide, according to the observation of several authors as well as of our own. 2. We emphasize the rôle of mucin in the production of hydrogen peroxide by pneumococcus, a circumstance which has been neglected by the authors who dealt with the matter. 3. In the metabolism of pneumococcus, the existence or formation of mucin is necessary for the maintenance of certain biological properties of the germ. 4. In cultures media containing blood and mucin, the production of meta-hemoglobin by pneumococcus is much larger than in those which contain no mucin. 5. We venture the hypothesis that mucin plays a very important rôle in the implantation of pneumonia, as in the periods preceeding this disease theres is an increase of bronchial secretion, and this secretion is almost entirely constintuted by mucin. 6. Mucin increases the pathogenic power of pneumococcus in mice according to the studies of several authors, which comes to favour our hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A), each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particles and associated ATPase activity. These morphological relationships are related to the previous conclusion that the transition from an aerobic to an essentially anaerobic metabolism is intimately associated with the mitochondrion and is a normal and mandatory feature of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature comparing salmon and wild type Glossina morsitans morsitans and that comparing tan and wild type Glossina palpalis palpalis is reviewed. New information is presented on behaviour and biochemistry of salmon and wild type G. m. morsitans. The eye color mutants result from two lesions in the tryptophan to xanthommatin pathway: lack of tryptophan oxygenase in G. m morsitans and failure to produce or retain xanthommatin in eyes (but not in testes) of G. p. palpalis. The salmon allele in G. m. morsitans is pleiotropic and profoundly affects many aspects of fly biology including longevity, reproductive capacity, vision, vectorial capacity and duration of flight, but not circadian rhythms. The tan allele in G. p. palpalis has little effect upon the biology of flies under laboratory conditions, except that tan flies appear less active than normal. Adult tsetse flies metabolize tryptophan to kynurenine which is excreted; fluctuations in activities of the enzymes producing kynurenine suggest this pathway is under metabolic control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of antimalarial chemotherapy is particulary alarming in view of the spread of parasite cross-resistances to drugs that are not even structurally related. Only the availability of new pharmacological models will make it possible to select molecules with novel mechanisms of action, thus delaving resistance and allowing the development of new chemotherapeutic strategies. We reached this objective in mice. Our approach is hunged on fundamental and applied research begun in 1980 to investigate to phospholipid (PL) metabolism of intraerythrocytic Plasmodium. This metabolism is abundant, specific and indispensable for the production of Plasmodium membranes. Any drug to interfere with this metabolism blocks parasitic development. The most effective interference yet found involves blockage of the choline transporter, which supplies Plasmodium with choline for the synthesis of phosphatidylcholine, its major PL, this is a limiting step in the pathway. The drug sensitivity thereshold is much lower for the parasite, which is more dependent on this metabolism than host cells. The compounds show in vitro activity against P. falciparum at 1 to 10 nM. They show a very low toxicity against a lymphblastoid cell line, demonstrating a total abscence of correlation between growth inhibition of parasites and lymphoblastoid cells. They show antimalarial activity in vivo, in the P. berghei or P. chabaudi/mouse system, at doses 20-to 100-fold lower than their in acute toxicity limit. The bioavailability of a radiolabeled form of the product seemed to be advantageous (slow blood clearance and no significant concentration in tissues). Lastly, the compounds are inexpensive to produce. They are stable and water-soluble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During their complex life cycle schistosomes alternate between the use of stored glycogen and reliance on host glucose to provide for their energy needs. In addition, there is dramatic variation between the relative contribution of aerobic versus anaerobic glucose metabolism during development. We have cloned a set of representative cDNAs that encode proteins involved in glucose uptake, glycolysis, Kreb's cycle and oxidative phosphorylation. The different cDNAs were used as probes to examine the expression of glucose metabolism genes during the schistosome life cycle. Steady state mRNA levels from whole cercariae, isolated cercarial tails, schistosomula and adult worms were analysed on Northern blots and dot blots which were quantified using storage phosphor technology. These studies reveal: (1) Transcripts encoding glycogen metabolic enzymes are expressed to much higher levels in cercarial tails than whole cercariae or schistosomula while the opposite pattern is found for glucose transporters and hexokinase transcripts; (2) Schistosomula contain low levels of transcripts encoding respiratory enzymes but regain the capacity for aerobic glucose metabolism as they mature to adulthood; (3) Male and female adults contain similar levels of the different transcripts involved in glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high performance liquid chromatography (HPLC) analysis it was possible to determine simultaneously the concentration of organic acids (pyruvate, lactate, succinate, fumarate, malate, acetate, propionate, acetoacetate, and ß-hydroxybutyrate) in the digestive gland and the extracellular concentration of these same acids in the hemolymph of estivating Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. After a 7 day period of estivation, there was a significant increase in the tissue levels of lactate, succinate, malate and acetate compared to non-estivating snails. After 14 days of estivation, the levels of lactate and acetate were also significantly elevated. The hemolymph concentrations of pyruvate and acetate increased significantly after 7 days and acetate concentrations continued to be significantly increased up to 14 days of estivation. The other organic acids studied, such as ketone body acetoacetate and ß-hydroxybutyrate or the volatile acid propionate, did not accumulate. Their tissue concentrations, however, increased on the 7th day of estivation and reached normal levels within two weeks of estivation for some of them. One should take into consideration how the reduction in metabolism can be handled under aerobic conditions, and what role anaerobic pathways may play in both energy formation and redox balance processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2) at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1), or sacrificed at days zero, 14 and 42 (model 2) for the measurement of total cholesterol (Chl), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02) in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013). Conversely, LDL was unaltered until day 42, when it increased (p = 0.043). Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice), while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041) and cyst counts above 300 (p = 0.044). Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the alterations in the glycogen content of tissues (digestive gland and cephalopedal mass) and glucose in the haemolymph of Biomphalaria glabrata BH strain infected with Schistosoma mansoni BH strain and exposed to the latex of Euphorbia splendens var. hislopii. A reduction in the glycogen deposits was observed in infected snails exposed and not exposed to latex. However, the exposure to latex caused a greater depletion of the glycogen levels in both sites analysed, especially from the third week onward. The utilisation of latex as a molluscicide to control the population of infected B. glabrata selectively is proposed.