43 resultados para Abandoned mined lands reclamation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to assess the fine-root (≤ 2 mm diameter) production dynamics of two forest regrowths at different ages. Fine-root production was monitored by the ingrowth core method in one 18-year-old site (2 ha) and one 10-year-old site (0.5 ha), both localized in the Apeú region, Northern Pará State, Brazil. The sites were abandoned after successive shifting cultivation, beginning in 1940. Monthly production of live fine-root was similar between sites and was influenced by rainfall seasonality, with higher production during the dry season than the wet season for mass and length. However, mortality in terms of mass was higher in the 10-year-old site than in the 18-year-old site. The seasonality influenced mortality only in the 18-year old site following the pattern observed for live fine-root. The influence seasonal on mortality in terms of length was different between sites, with higher mortality during the wet season in the 10-year-old site and higher mortality during the dry season in the 18-year-old site. Specific root length was higher during the wet season and at the 10-year-old site. Fine-root production was not influenced by the chronosequence of the sites studied, probably fine-root production may have already stabilized in the sites or it depended more on climate and soil conditions. The production of fine-roots mass and length were indicators that generally showed the same pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the results of laser-assisted extraction of permanent pacemaker and defibrillator leads. METHODS: We operated upon 36 patients, whose mean age was 54.2 years, and extracted 56 leads. The reasons for extracting the leads were as follows: infection in 19 patients, elective replacement in 13, and other causes in 4 patients. The mean time of catheter placement was 7.5±5.5 years. Forty-seven leads were from pacemakers, and 9 were from defibrillators. Thirty-eight leads were in use, 14 had been abandoned in the pacemaker pocket, and 4 had been abandoned inside the venous system. RESULTS: We successfully extracted 54 catheters, obtaining a 96.4% rate of success and an 82.1% rate for complete extraction. The 2 unsuccessful cases were due to the presence of calcium in the trajectory of the lead. The mean duration of laser light application was 123.0±104.5 s, using 5,215.2±4,924.0 pulses, in a total of 24.4±24.2 cycles of application. Thirty-four leads were extracted from the myocardium with countertraction after complete progression of the laser sheath, 12 leads came loose during the progression of the laser sheath, and the remaining 10 were extracted with other maneuvers. One patient experienced cardiac tamponade after extraction of the defibrillator lead, requiring open emergency surgery. CONCLUSION: The use of the excimer laser allowed extraction of the leads with a 96% rate of success; it was not effective in 2 patients who had calcification on the lead. One patient (2.8%) had a complication that required cardiac surgery on an emergency basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A preliminary account on the normal development of the imaginai discs in holometabolic Insects is made to serve as an introduction to the study of the hereditary homoeosis. Several facts and experimental data furnished specially by the students of Drosophila are brought here in searching for a more adequate explanation of this highly interesting phenomenon. The results obtained from the investigations of different homoeotic mutants are analysed in order to test Goldschmidt's theory of homoeosis. Critical examination of the basis on which this theory was elaborated are equally made. As a result from an extensive theoretical consideration of the matter and a long discussion of the most recent papers on this subject the present writer concludes that the Goldschmidt explanation of the homoeotic phenomena based on the action of diffusing substances produced by the genes, the "evocators", and on the alteration of the normal speed of maturation of the imaginai discs equally due to the activity of the genes, could not be proved and therefore should be abandoned. In the same situation is any other explanation like that of Waddington or Villee considered as fundamentally identical to that of Goldschmidt. In order to clear the problem of homoeosis in terms which seem to put the phenomenon in complete agreement with the known facts the present writer elaborated a theory first published a few years ago (1941) based entirely on the assumption that the imaginai discs are specifically determined by some kind of substances, probably of chemical nature, contained in the cytoplam of the cells entering in the consti- tution of each individual disc. These substances already present in the blastem of the egg in which they are distributed in a definite order, pass to different cells at the time the blastem is transformed into blastoderm. These substances according to their organogenic potentiality may be called antenal-substance, legsubstance, wing-substance, eye-substance, etc. The hipoderm of the embryo resulting from the multiplication of the blastoderm cells would be constituted by a series of cellular areas differing from each other in their particular organoformative capacity. Thus the hypoderm giving rise to the imaginai discs, it follows that each disc must have the same organogenic power of the hypodermal area it came from. Therefore the discs i*re determinated since their origin by substances enclosed in the cytoplasm of their cells and consequently can no longer alter their potentiality. When an antennal disc develops into a leg one can conclude that this disc in spite of its position in the body of the larva is not, properly speaking, an antennal disc but a true leg disc whose cells instead of having in their cytoplasm the antennal substance derived from the egg blastem have in its place the leg-substance. Now, if a disc produces a tarsus or an antenna or even a compound appendage partly tarsus-like, partly antenna-like, it follows tha,t both tarsal and antennal substances are present in it. The ultimate aspect of the compound structure depends upon the reaction of each kind of substance to the different causes influencing development. For instance, temperature may orient the direction of development either lowards arista or tarsus, stimulating, or opposing to the one or the other of these substances. Confering to the genes the faculty of altering the constitution of the substances containing in the cytoplasm forming the egg blastem or causing transposition of these substances from one area to another or promoting the substitution of a given substance by a different one, the hereditary homoeocis may be easily explained. However, in the opinion of the present writer cytoplasm takes the initiative in all developmental process, provoking the chromosomes to react specifically and proportionally. Accordingly, the mutations causing homoeotic phenomena may arise independently at different rime in the cytoplasm and in the chromosomes. To the part taken by the chromosomes in the manifestation of the homoeotic characters is due the mendalian ratio observed in homoeotic X normal crosses. Expression, in itself, is mainly due to the proportion of the different substances in the cells of the affected discs. Homoeotic phenomena not presenting mendelian ratio may appear as consequence of cytoplasmic mutation not accompanied by chromosomal mutation. The great variability in the morphology of the homoeotic characteres, some individual being changed towards an extreme expression of the mutant phenotype while others in spite of their homozigous constitution cannot be distinguished from the normal ones, strongly supports the interpretation based on the relative proportion of the determining substances in the discs. To the same interpretation point also asymetry and other particularities observed in the exteriorization of the phenomenon. In conformity with this new conception homoeosis should not prove homology of Insect appendages (Villee 1942) since a more replacement of substances may cause legs to develop in substitution of the wings, as it was already observed (requiring confirmation in the opinion of Bateson 1894, p. 184) and no one would conclude for the homology of these organs in the usual meaning of the term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study represents one of the first contributions to the knowledge on the quantitative fidelity of the recent freshwater molluscan assemblages in subtropical rivers. Thanatocoenoses and biocoenoses were studied in straight and meandering to braided sectors, in the middle course of the Touro Passo River, a fourth-order tributary of the Uruguay River, located in the westernmost part of the State of Rio Grande do Sul. Samplings were carried out through quadrats of 5 m², five in each sector. A total area of 50 m² was sampled. Samplings were also made in a lentic environment (abandoned meander), with intermittent communication with the Touro Passo River, aiming to record out-of-habitat shell transportation from the lentic communities to the main river channel. The results show that, despite the frequent oscillation of the water level, the biocoenosis of the Touro Passo River shows high ecological fidelity and undergoes little influence from the lentic vicinal environments. The taxonomic composition and some features of the structure of communities, especially the dominant species, also reflect some ecological differences between the two main sectors sampled, such as the complexity of habitats in the meandering-sector. Regarding the quantitative fidelity, 60% of the species found alive were also found dead and 47.3% of the species found dead were also found alive, at river-scale. However, 72% of the dead individuals belong to species also found alive. This value might be related with the good rank order correlation obtained for live/dead assemblages. Consequently, the dominant species of the thanatocoenoses could be used to infer the ecological attributes of the biocoenoses. The values of all the indexes analyzed were very variable in small-scale samplings (quadrat), but were more similar to others registered in previous studies, when they were analyzed in a station and river scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The only breeding record of Spartonoica maluroides (d'Orbigny & Lafresnaye, 1837) for Brazil is based on the observation of a fledgling in southern Rio Grande do Sul in January 1976. On 7 December 2005 we discovered a nest containing three nestlings at the southeastern end of Lagoa Pequena, municipality of Pelotas, Rio Grande do Sul. The nest was concealed at the base of a cavity in a Spartina densiflora (Poaceae) tussock located at the edge of a saltmarsh. The nest was built of fine pieces of dead Scirpus olneyi (Cyperaceae) and S. densiflora leaves firmly interlaced to the internal leaves of the tussock. Live leaves of S. densiflora lining the cavity comprised a substantial part of the nest's architecture, forming most of its upper lateral walls and roof. The lower section was more elaborate, resembling a deep cup and forming a distinct incubation chamber. Adults reached the nest's interior through an irregular apical opening amidst the leaves. The nest was 244 mm high and 140 mm wide. The incubation chamber had an external diameter of 138.5 mm, an internal diameter of 79.4 mm and was 86 mm deep. It was lined with fine leaves and white plant fibers. Nestlings were five to six days old. A total of 107 neossoptiles restricted to the capital, spinal and alar tracts were recorded in one nestling. The distribution of neossoptiles in the ocular region of S. maluroides forms a distinct pattern which can be typical of Furnariidae and related families. Two adults attended the nest, bringing small insects to the nestlings and removing fecal sacs. We recorded at least 74 visits to the nest during a ca. 6 h period during an afternoon. The average number of visits per hour was 12.8 ± 1.3. An adult bird spent on average 0.7 ± 0.56 minutes inside the nest attending nestlings. The nest remained unattended on average for 3.61 ± 3.13 minutes. The hour of the day had no influence on the amount of time spent by an adult in the nest or away from it. We returned to the area on 15 December 2005 and found the nest abandoned. Observations confirm that S. maluroides is a resident breeder in southern Brazil and that the saltmarshes of the Lagoa do Patos estuary are an important year-round habitat for the species. A nestling and the nest were collected to document the record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We document the expansion of the breeding distribution of the Little Blue Heron Egretta caerulea (Linnaeus, 1758) to 850 km beyond its previous southern limit in South America. In addition we present data on abundance, breeding biology and food of the species in the Patos Lagoon estuary, the area which the species recently colonized. The maximum abundance recorded in the breeding colony and in a nocturnal roosting site was 53 and 49 individuals respectively. Nesting occurred from September to March. Birds nested in a mixed breeding colony together with about 3,000 breeding pairs of seven other species of Pelecaniformes, in a swampy forest near the margin of the estuary. Five nests were between 1.5 and 4.3 m from the ground, on the shrub Daphnopsis racemosa (Thymelaeaceae), on the trees Sebastiana brasiliensis (Euphorbiaceae) and Mimosa bimucronata (Leguminosae), or on the bamboo Bambusa sp. (Poaceae). Four nests produced two fledglings each, while one nest was abandoned. Of 13 grouped samples of food regurgitated by five nestlings, Pink Shrimp Farfantepenaeus paulensis (Perez-Farfante, 1967) constituted 70% in mass, while total length of ingested fishes and shrimps varied mostly between 20 and 50 mm. Estuarine prey items represented 99% of the total food mass. The recent southward expansion of the breeding range of the Little Blue Heron in South America may be a response to climate warming of the Patos Lagoon estuary. Degradation of estuaries in the southwestern Atlantic may also be forcing the birds to breed in areas outside previous geographical range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of the bird community in a small forest fragment was evaluated along seven years in relation to changes in the surrounding landscape. The study area is an Araucaria forest fragment in Southern Brazil (state of Paraná). The sampling period covered the years 1988 through 1994 and the mark-release-recapture method was utilized. The landscape analysis was based on Landsat TM images, and changes in exotic tree plantations, native forest, open areas (agriculture, pasture, bare soil, and abandoned field), and "capoeira"(native vegetation < 2 m) were quantified. The relationship between landscape changes and changes in abundance diversity of forest birds, open-area birds, forest-edge birds, and bamboo specialists was evaluated. Richness estimates were run for each year studied. The richness recorded in the study area comprised 96 species. The richness estimates were 114, 118 and 110 species for Chao 1, Jackknife 1 and Bootstrap, respectively. The bird community varied in species richness, abundance and diversity from year to year. As for species diversity, 1991, 1993 and 1994 were significantly different from the other years. Changes in the landscape contributed to the increase in abundance and richness for the groups of forest, open-area and bamboo-specialist species. An important factor discussed was the effect of the flowering of "taquara" (Poaceae), which contributed significantly to increasing richness of bamboo seed eaters, mainly in 1992 and 1993. In general, the results showed that landscape changes affected the dynamics and structure of the bird community of this forest fragment over time, and proved to have an important role in conservation of the avian community in areas of intensive forestry and agricultural activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of salmonellae in accordance with the Kauffmann-White schema accepted by the presents various inconveniences and difficulties to application. Among these is the necessity of preparing, dosing and preserving a considerable number of specific sera whose validity as is well known, is limited. The criterion of Kauffmann’s classification is exclusively, for it abandoned cultural tests, leaving therefore only a unilateral criterion. By following it one might include Chromobacterium typhi-flavum in the Salmonella genus as well as other bacteria which differ completely from the Salmonella, as long as they are antigenically related. On the other hand, the chart approximates or separates in the different groups of antigen O species or types of salmonellae which are biologically close or almost indistinguishable. The chart has given rise to an excessive number of species and lypes of salmonellae which from 44 in the chart approved by the in 1934 rose ro 60 in Bergey’s Manual and everything leads one to believe that the end is not yet for every day new lypes or species are found. And perforce this must be so for new antigenic factors have been found which give rise to new structural combinations. Applying the formula of combinations (formule) to the factors already known, there are probable possibilities of having 260 different antigenic combinations in group A, or 3260 lypes or species if all the flagellate antigens of the other groups should be found, in it combined 2 and 2. Futher applying the formula of combinations to the other groups there would be possibility of so many combinations that the number of salmonellae would exceed the number of known bacterian species or perhaps the number of those existing on earth. Undoubledly Kauffmann-White’s chart is an improvement, but the bacterian analysis made with it was exaggerated and exceeded the limit of the present possibilities of the realities of life. It revealed interesting aspects of the somatic complexity of bacteria but seems untenable because of its use in pratical sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author studied, the horizontal and vertical distribution of most common part of the flora and fauna of the bay of Guanabara at Rio de Janeiro. In this paper the eulittoral, poly, meso and oligohaline regions were localised and studied; and the first chart of its distribution was presented (fig. 2). The salinity of superficial waters was established through determinations based on 30 trips inside the buy for collecting biological materials. Some often 409 determinations which were previous reported together with the present ones served for the eleboration of a salinity map of the bay of Guanabara (fig. 1). This map of fig. 2 shows the geographic locations of the water regions. EULITTORAL WATER REGIME — Fig. 3 shows the diagram scheme of fauna and flora of this regime. Sea water salinity 34/1.000, density mean 1.027, transparent greenish waters, sea coast with moderate bursting waves. Limpid sea shore with white sand, gneiss with the big barnacle Tetraclita squamosa var. stalactifera (Lam. Pilsbry. Vertical distributions: barna¬cles layers with a green region in which are present the oyster Ostrea pa-rasitica L., the barnacles Tetraclita, Chthamalus, Balanus tintinnabulum var. tintinnabulum (L.) e var. antillensis Pilsbry in connection with several mollusca and the sea beatle Isopoda Lygia sp. Covered by water and exposed to air by the tidal ritms, there is a stratum of brown animals that is the layer of mussels Mytilus perna L., with others brown and chestnut animals : the Crustacea Pachygrapsus, the little crab Porcellana sp., the stone crab Me-nippe nodifrons Stimpson, the sea stars Echinaster brasiliensis (Mull. & Tr.), Astropecten sp. and the sea anemones Actinia sp. Underneath and never visible there is a subtidal region with green tubular algae of genus Codium and amidst its bunches the sea urchin Lycthchinus variegatus (Agass.) walks and more deeply there are numerous sand-dollars Encope emarginata (Leske). The microplancton of this regime is Ceratiumplancton. POLYHALINE WATER REGIMB — Water almost sea water, but directly influenced by continental lands, with rock salts dissolved and in suspension. Salinity: 33 to 32/1.000. This waters endure the actions of the popular nicknamed «water of the hill» (as the waters of mesohaline and oligohaline regimes), becoming suddenly reddish during several hours. That pheno¬menon returns several times in the year and come with great mortality of fishes. In these waters, according to Dr. J. G. FARIA there are species of Protozoa : Peridinea, the Glenoidinium trochoideum St., followed by its satellites which he thinks that they are able to secret toxical substances which can slaughter some species of fishes. In these «waters of the hill» was found a species of Copepoda the Charlesia darwini. In August 1946 the west shore of the Guanabara was plenty of killed fishes occupying a area of 8 feet large by 3 nautical miles of lenght. The enclosure for catching fishes in the rivers mouthes presents in these periods mass dead fishes. The phenomenon of «waters of the hill» appears with the first rains after a period of long dryness. MESOHALINE WATER REGIME — Fig. 4 shows the the diagramm scheme. Salt or brackish water from 30 to 17/1.000 salinity, sometimes until 10/1.000. Turbid waters with mud in suspension, chestnut, claveyous waters; shore dirty black mud without waving bursting; the waters are warmer and shorner than those of the polihaline regime. Mangrove shore with the mangrove trees : Rhizophora mangle L., Avicennia sp., Laguncularia sp., and the »cotton tree of sea» Hibiscus sp. Fauna: the great land crab «guaimú» Cardisoma guanhumi Latr., ashore in dry firm land. There is the real land crab Ucides cordatus (L.) in wetting mud and in neigh¬ bourhood of the burrows of the fiddler-crabs of genus Uca. On stones and in the roots of the Rhizophora inhabits the brightly colored mangrove-tree-crab («aratu» Portuguese nickname) Goniopsis cruentata (Latreille) and the sparingly the big oyster Ostrea rhizophorae Guild. Lower is the region of barnacles Balanus amphitrite var. communis Darwin and var. niveus Darwin; Balanus tintinnabulum var. tintinnabulum (L.) doesn't grow in this brackish water; lower is the region of Pelecipoda with prepollency of Venus and Cytherea shell-fishes and the Panopeus mud crab; there are the sea lettuce Ulva and the Gastreropod Cerithium. The Paguridae Clibanarius which lives in the empty shells of Gasteropod molluscs, and the sessile ascidians Tethium plicatum (Lesuer) appears in some seasons. In the bottom there is a black argillous mud where the «one landed shrimps» Alpheus sp. is hidden. OLIGOHALINE WATER REGIME — The salinity is lower than 10/1.000. average 8/1.000. There are no barnacles and no sea-beetles Isopods of genus Lygia; on the hay of the shore there are several graminea. This brackish water pervades by mouthes of rivers and penetrates until about 3 kilometers river above. While there is some salt dissolved in water, there are some mud crabs of the genus Uca, Sesarma, Metasesarma and Chasmagnatus. The presence of floating green plants coming from the rivers in the waters of a region indicated the oligohaline waters, with low salt content because when the average of NaCl increases above 8/1.000 these plants die and become rusty colored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the author considers that in Brazil, there exist three forms of the disease of the Exanthematic Typhus group, that have been well studied: Neotropic Exanthematic Typhus, Murine Typhus and "Q" fever. The first of these forms has existed in this country, perhaps, for over five hundred years. He says that modern antibiotic, Aureomycin, Chloromycetin and, principally, Terramcin have resolved the problem of the therapeutic treatment of the disease. The modern insecticides, D. D. T., Gammexane and Toxafeno have resolved the prophylactic problem. The author studies minutely the question of denomination, showing, by means of drawing and history, the origin of the diseases, both Norte American and Brazilian. The name Neotropic Exanthematic Typhus (in BRazil, Colombia, United States or India) should substitute the erroneous anme "Spotted Fever"; the disease is exanthematic, a very different thing. He formulates two hypotheses about these diseases: first - it passed from the neotropic to the neartic region, where it acquired individual properties; second - they developed independently in a more rmeote epoch, acquiring each its own characteristics. The disease is today rather of the neotropic than of the neartic region. As it also exists in India it cannot be named American exanthematic Typhus. The author finds it unnecessary to change the name to "Rikettsioses"; we do not call bacillar dysentery "Schigeloses"or malignant edema "Chlostridiose". The name exanthematic typhus is classic, precise, scientific, expressive and the denomination "neotropical" completes the localisation. The author thinks that all the diseases of the exanthematic typhus group, in the world had a simple primitive common origin. At first, the rickettsias or the virus had a free life, perhaps in the waters of the marshes or grass-lands. Later, in the struggle for life, came the parasitism of the plants. They became fitoparatifs. The mode of life...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buprestid leaf-miners are generally included in the subtribe Trachytes. The genera belonging to this subtribe are commonly very rich in number of species and their systematics envolves huge difficulties. On the other hand the biological knowledge on those insects is very poor. The A. tries to clarify the systematical status of two species of Pachyschelus - P. subundulatus Kerr. and P. fulgidipennis Lucas, and redescribes also P. binderi Obenberger. The hosts of the first two species are recorded, namely: Terminalia catappa (Combretaceae) - host-plant of P. subundulatus and Luhea spp. (Tiliaceae) - host-plant of P. fulgidipennis. The mines, developmental stages and habits of the three species are described and is made a full redescription of the adults, both male and female. The study is based on reared material from mined leaves, as well as insects assembled in several brazilian collections, both private and public ones. The importance of some biological facts as well as some morphological characters are stressed. The knowledge of the host-plants and the shape and other structural features of the mine were found to be helpfull to the identification of the species. Some morphological features of adults also prooved to be of systematical value. Besides the female pygidium and the male genitalia, the tibiae of the third pair of legs show some intersting structural details, reasonably alike in both sexes and quite different in each species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In heavily infected young patients, there is a "non-congestive" phase of the disease with splenomegaly which can improve after chemoterapy. A strong correlation between hepatosplenic form and worm burden in young patients has been repeatedly shown. The pattern of vascular intrhepatic lesions seems to depend on two mechanisms: (a) egg embolization, with a partial blocking of the portal vasculature; (b) the appearance of small portal collaterals along the intrahepatic portal sistem. The role played by hepatitis B virus (HBV) and C virus infections in the pathogenesis of liver lesions is variably considered. Selective arteriography shows a reduced diameter of hepatic artery with thin and arched branches outlining vascular gaps. A rich arterial network , as described in autopsy cases, is usually not seen in vivo, except after splenectomy or shunt surgery. An augmented hepatic arterial flow was demonstrated in infected animals. These facts suggest that the poor intrahepatic arterial vascularization demonstrated by selective arteriography in humans is due to a "functional deviation"of arterial blood to the splenic territory. The best results obtained in treatment of portal hypertension were: esophagogastric desvascularization and splenectomy (EGDS), although risk of rebleeding persists; classical (proximal) splenorenal shunt (SRS) should be abandoned; distal splenorenal shunt may complicate with hepatic encephalopaty, although later and in a lower percentage than in SRS. Propranolol is currently under investigation. In our Department, schistosomotic patients with esophageal varices bleeding are treated by EGDS and, if rebleeding occurs, by sclerosis of the varices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From March 1990 to December 1992, the National Institute for Quality Control of Health-INCQS Research Collection received 1476 bacterial samples isolated from human cerebrospinal fluid of patients suspect of meningitis in Rio de Janeiro, from the São Sebastião State Institute of Infectious Diseases (IEISS). Neisseria meningitidis was found in most of these materials, followed in smaller number by Haemophilus sp. and Streptococcus pneumoniae. The great majority of N. meningitidis strains was serogroup B, followed by serogroup C and a few strains of serogroup W135. More than 50 of the isolated bacterial agents came from the predominant 0-4 years age group. The majority of the strains were from patients in the region known as "Baixada Fluminense" (Low Lands). The aim of the work presented here is to obtain samples of meningitis cases in at least 70 of the State of Rio de Janeiro and develop a collaborative research between INCQS-FIOCRUZ and the IEISS, in order to set up a collection of strains for future studies. However, despite work being carried out in a rather satisfactory way, difficulties still arise and have to be overcome, to survey data.