26 resultados para ART ALGORITHM
Resumo:
Magnetic resonance imaging (MRI) has several advantages in the evaluation of cancer patients with thoracic lesions, including involvement of the chest wall, pleura, lungs, mediastinum, esophagus and heart. It is a quite useful tool in the diagnosis, staging, surgical planning, treatment response evaluation and follow-up of these patients. In the present review, the authors contextualize the relevance of MRI in the evaluation of thoracic lesions in cancer patients. Considering that MRI is a widely available method with high contrast and spatial resolution and without the risks associated with the use of ionizing radiation, its use combined with new techniques such as cine-MRI and functional methods such as perfusion- and diffusion-weighted imaging may be useful as an alternative tool with performance comparable or complementary to conventional radiological methods such as radiography, computed tomography and PET/CT imaging in the evaluation of patients with thoracic neoplasias.
Resumo:
Whole-body imaging in children was classically performed with radiography, positron-emission tomography, either combined or not with computed tomography, the latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic resonance imaging (MRI), in association with the recently developed metabolic and functional techniques such as diffusion-weighted imaging, has brought the advantage of a comprehensive evaluation of pediatric patients without the risks inherent to ionizing radiation usually present in other conventional imaging methods. It is a rapid and sensitive method, particularly in pediatrics, for detecting and monitoring multifocal lesions in the body as a whole. In pediatrics, it is utilized for both oncologic and non-oncologic indications such as screening and diagnosis of tumors in patients with genetic syndromes, evaluation of disease extent and staging, evaluation of therapeutic response and post-therapy follow-up, evaluation of non neoplastic diseases such as multifocal osteomyelitis, vascular malformations and syndromes affecting multiple regions of the body. The present review was aimed at describing the major indications of whole-body MRI in pediatrics added of technical considerations.
Resumo:
This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.
Resumo:
Separations using supercritical fluid chromatography (SFC) with packed columns have been re-discovered and explored in recent years. SFC enables fast and efficient separations and, in some cases, gives better results than high performance liquid chromatography (HPLC). This paper provides an overview of recent advances in SFC separations using packed columns for both achiral and chiral separations. The most important types of stationary phases used in SFC are discussed as well as the most critical parameters involved in the separations and some recent applications.
Resumo:
It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
En este artículo se describe la trayectoria de búsqueda espiritual de un agente nodal en la red espiritual alternativa comúnmente conocida como New Age para atender el impacto de su trayectoria en la hibridación de una espiritualidad neoindia. Se proponen tres procesos a tenerse en cuenta para una metodología del estudio del impacto de hibridación cultural que genera el New Age: 1) Su condición de diseñador de menús creyentes individualizados hechos con retazos de distintas tradiciones religiosas (Champion y Hervieu-Lèger 1990); 2) su agencia como “agente nodal” para tejer articulaciones, alianzas y conexiones en la red: entre otros agentes nodos, entre diversos circuitos y otros campos sociales especializados; y 3) su competencia de “polinizador” (Soares 2009) de culturas y religiones. El argumento de este trabajo destaca que los buscadores espirituales en su andar no sólo recogen fragmentos culturales de distintas tradiciones para armar menús personalizados de creencias, sino que además son transmisores de significados que contribuyen a hibridar las culturas por donde van pasando. Muchas de las cuales coinciden con comunidades étnicas valoradas por su relación con la naturaleza, su ancestralidad y su exotismo a los ojos de los occidentales.
Resumo:
Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions). Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.