40 resultados para ANATASE TIO2(101)
Resumo:
The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.
Resumo:
The electrochemical properties of methylene blue immobilized on cellulose/TiO2 and mixed oxide SiO2/TiO2 matrices were investigated by means of cyclic voltammetry. The electron mediator property of the methylene blue was optimized using a factorial design, consisting of four factors in two levels. The experimental observations and data analyses on the system indicate that the lowest peak separation occurs for Sil/TiOAM, 1.0 mol L-1 KCl solution and 20 mV s-1 scan rate, while values of current ratio closest to unity were found for Cel/TiOAM independent of electrolyte concentration, 0.2 or 1.0 mol L-1, and scan rate, 20 mV s-1 or 60 mV s-1.
Resumo:
TiO2 immobilization on concrete was studied using mixtures with cement, varnish and resin. The UV radiation sources were a germicide UV lamp and solar light. Aqueous solutions of chloroform (CHCl3) and of phenol were prepared and recirculated over the TiO2 immobilized surfaces. The immobilized TiO2 surfaces showed better photocatalytic efficiency for phenol degradation compared to the control. For CHCl3, the presence or absence of the catalyst did not cause any significant difference to its degradation efficiency. The micrographic results showed a more homogeneous surface for TiO2 immobilized in resin and varnish.
Resumo:
The degradation of disperses dyes in aqueous solution and in effluents from textile industry has been investigated by photoelectrocatalytic oxidation using nanoporous thin films electrodes of Ti/TiO2. Samples of dispersil black dye and dispersil blue dye after 300 min of photoelectrolyzed at applied potential of +1.0 V and UV irradiation exhibited 100% of discoloration and 90% and 64% reduction total organic carbon, respectively. The proposed method was applied with success in a textile industry effluent containing residues of these dyes, which after 300 min of treatment leads to reduction of 60% of COD and 64% removal of TOC.
Resumo:
The oxidation of arsenic (As(III) to As(V)) in water samples was performed by heterogeneous photocatalysis using a TiO2 film immobilized inside a photochemical reactor. After oxidation, As(V) was removed from the water samples by coprecipitation with ferric sulfate. The final conditions of oxidation and arsenic removal (TiO2 film prepared with a suspension: 10% (w/v); pH: 7.0; oxidation time: 30 min and Fe3+ concentration: 50 mg L-1) were applied in natural water samples which were supplemented with 1.0 mg L-1 of As(III) to verify the influence of the matrix. After treatment, more than 99% of arsenic was removed from the water.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
The main goal of this paper was to study the degradation of synthetic dyes using photoelectrocatalytic properties of particulate films of TiO2 supported on plates of titanium and stimulated by UV-Vis radiation. The dyes decolorizations were measured using spectrophotometric methods to verify which the conditions on Ti/TiO2 electrode was the best for the photoelectrodegradation of them. The results showed that decolorization rates were higher than 90% during a period of 270 min. FT-IR spectroscopy showed that intermediate substances were formed after the decolorization and N=N group/aromatic structures were preserved independently of the specific structure of the dyes.
Resumo:
Titania-supported Ir catalysts were used in the hydrogenation of furfural. Reactions were carried out in a stirred batch type reactor at 0.62MPa and 363K using a 0.10M solution of furfural in a 1:1 mixture n-heptane -ethanol as solvent. Catalysts containing 2 wt% of Ir were reduced in H2 flow at different temperatures in the range 473-773K. The catalysts were characterized by H2 chemisorption, TEM, TPR, TPD of NH3 and XPS. Conversion of furfural is higher at lower reduction temperatures, but leads to byproducts whereas reduction at higher temperatures shows selectivity to furfuryl alcohol close to 100%.
Resumo:
In this work, TiO2 photocatalysis was used to disinfect domestic wastewaters previously treated by different biological treatment systems: Upward-flow Anaerobic Sludge Blanket (UASB), facultative pond, and duckweed pond. The microorganisms monitored were E. coli, total coliforms, Shigella species, and Salmonella species. Photocatalytic experiments were carried out using two light sources: a solar simulator (UV intensity: 68-70 W m-2) and black-light lamps (BLL UV intensity: 17-20 W m-2). Samples were taken after each treatment stage. Results indicate that bacterial photocatalytic inactivation is affected by characteristics of the effluent, including turbidity, concentration of organic matter, and bacterial concentration, which depend of the type of biological pretreatment previously used.
Resumo:
Cu catalysts supported on CeO2, TiO2 and CeO2/TiO2 were prepared by precipitation method and used for preferential oxidation of carbon monoxide contained in a hydrogen flow generated by methane steam reforming. The samples were characterized by XRD, BET and TPR techniques. The catalytic properties were studied in the 50-330ºC range by using a quartz micro-reactor vertically positioned on an electrical furnace. The results showed that the small copper particles generated with the lower metal content are the most easily reducible and give the best catalytic performance. In respect of support effect, the strong metal-support interaction and the redox characteristics of the CuOx-CeO2 series resulted in the best catalytic results, especially with the sample with 1% copper content.
Resumo:
In the present work TiO2 films were formed over Indium Tin Oxide (ITO) employing cathodic electrophoretic deposition (Cathodic-EPD) and Dr. Blade Technique. The films were characterized by electrochemical techniques in order to compare their electronic properties; as well as, their photoelectrochemical behavior. The electrochemical performance showed by the films, allowed to relate the modification occurring during the Cathodic-EPD, with the partial reduction of TiO2 nanoparticles, generating Ti3+ defects. These trapping states are modifying the electronic properties of the film, and diminishing the transport of the photoelectrogenerated electrons toward ITO.
Resumo:
TiO2 thin films were prepared by the sol-gel method using different acids (HCl and HAc), with a parallel evaluation of the gel ageing effects on the film properties. After the thermal treatments, the resulting materials were characterized through gravimetric analysis, UV-VIS spectrophotometry (from which optical parameters such as band gap was derived), XRD, morphological surface analysis (AFM) and photocatalytic activity. The majority of the obtained thin films parameters were similar independent of the acid type and the ageing time of the gel. Nevertheless, a visible effect of the surface morphology properties on the films and their photocatalytic activity was observed.
Resumo:
The Zn-TiO2nanocomposite films were prepared by electrodeposition, using an acidic zinc sulphate solution with TiO2 nanoparticles in suspension. The as-deposited samples have been heated in air at 450 ºC for 6 h. The XRD and SEM analyses pointed out to the metal matrix conversion from Zn to ZnO and a rich morphology of needles-shaped grains. These materials were used on the photoelectrochemical degradation of AO7, which was efficiently degraded, with 40% of color removal, after 2 h period at 1.0 V, under white light irradiation. The apparent first order rate constant of the photoelectrodegradation reaction was 4.12 x 10-3 min-1.
Resumo:
This work involved the study of degradation of the herbicide bentazone in aqueous solution by different routes, in order to search a method that generates safe products to the environment. It was tested electrochemical polarization methods involving positive and negative potential, irradiation with UV light and deposition of TiO2 on the electrode surface, seeking a catalytic effect. After different times of degradation, aliquots were removed and the scan of molecular absorption spectrum of UV-Vis was performed. From the spectra decay of bentazone, the kinetics of different processes was accompanied and the rate constants were determined.
Resumo:
In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.