24 resultados para ALCOHOL FUEL CELLS
Resumo:
Density Functional Theory (DFT) calculations on the interactions of small atoms (H, C, O, and S) on first-row transition metal clusters were performed. The results show that the adsorption site may vary between the metal surface and the edge of the cluster. The adsorption energies, adatom-nearest neighbor and adatom-metal plane distances were also determined. Finally, the authors present a discussion about the performance of these metals as anodes on solid oxide fuel cells. The results obtained agree with empirical data, indicating that the theoretical model used is adequate
Resumo:
Significant functions in the Proton Exchange Membrane Fuel Cells (PEMFCs) rely on Gas Diffusion Layers (GDLs), such as control the water balance in the membrane electrode assembly (MEA), allow suitable gas permeability and porosity, etc. Aware of the GDL importance in the cell performance and its great demand in scale-up projects, the fuel cell research group at Instituto de Pesquisas Energéticas e Nucleares (IPEN) has developed a Sieve Printing method (innovative in Brazil) as a strategic solution for producing GDL and electrodes used in high power PEMFC stacks. The method has shown to be adequate to fabricate low cost electrodes, GDLs of different dimensions and to produce any amount of MEAs for power stacks.
Resumo:
This work reports a review on the status and technical feasibility of the application of ethanol as fuel for Solid Oxide Fuel Cells (SOFC), presenting both external reform and cell with direct utilization of ethanol. Based on this survey, both experimental results and mathematical modeling indicated the technical feasibility of power generation by ethanol SOFC, with cell units producing 450 mW/cm², sufficient for scale up to large stationary plants. The quantitative assessments in the literature show this field to be promising for researchers and private sector investment as well being a strategic technology for government policy in the short and long term.
Resumo:
OBJECTIVE: The aim of this study was to investigate the polymorphism Ile349Val of the enzyme alcohol dehydrogenase ADH1C gene among individuals with alcohol dependence syndrome (ADS) attending Alcoholics Anonymous (AA) meetings. METHODS: A total of 120 subjects residing in Rio de Janeiro city participated in this study. Subjects were divided into two groups: a group consisting of 54 individuals from the ADS group and 66 individuals that declared not having any alcohol dependence (control group). DNA was extracted from mouth epithelial cells by phenol-chloroform method and further submitted to amplification by polymerase chain reaction (PCR). RESULTS: Our results did not show differences between the genotypes of control individuals and ADS subjects. Nevertheless, we found increased rates of alcoholism in families of ADS subjects as compared to controls. CONCLUSIONS: Our results did not show any genotype difference on the ADH1C gene when control and AA genotypes are compared.
The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes
Resumo:
Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC) of intact human red blood cells to doxorubicinol (40 µM) and to aglycone derivatives of doxorubicin (40 µM) induced, compared with untreated red cells: i) a ~2-fold stimulation of the pentose phosphate pathway (PPP) and ii) a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20%) and superoxide dismutase (~60%). In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35%) and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22%) in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.
Resumo:
Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/ß-actin-mRNA ratio (mean ± SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 ± 0.15; N = 5; P < 0.05) compared to non-responders (0.35 ± 0.17; N = 12) and controls (0.30 ± 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.
Resumo:
Atherosclerosis is a chronic inflammatory disease which may cause obstructions of the coronary, cerebral and peripheral arteries. It is typically multifactorial, most often dependent on risk factors such as hypercholesterolemia, diabetes, smoking, hypertension, sedentarism, and obesity. It is the single main cause of death in most developed countries due to myocardial infarction, angina, sudden death, and heart failure. Several epidemiological studies suggest that moderate alcohol intake, especially red wine, decrease cardiac mortality due to atherosclerosis. The alcohol effect is described by a J curve, suggesting that moderate drinkers may benefit while abstainers and heavy drinkers are at higher risk. Experimental studies indicate that most beneficial effects of drinking are attributable to flavonoids that are present in red wine, purple grape juice and several fruits and vegetables. The mechanisms include antiplatelet actions, increases in high-density lipoprotein, antioxidation, reduced endothelin-1 production, and increased endothelial nitric oxide synthase expression which causes augmented nitric oxide production by endothelial cells. These findings lead to the concept that moderate red wine drinking, in the absence of contraindications, may be beneficial to patients who are at risk of atherosclerotic cardiovascular events. Moreover, a diet based on fruits and vegetables containing flavonoids may be even more beneficial.
Resumo:
Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.
Resumo:
In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose) is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI), reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.