34 resultados para 3D Geometry
Resumo:
The objective of this work was to build mock-ups of complete yerba mate plants in several stages of development, using the InterpolMate software, and to compute photosynthesis on the interpolated structure. The mock-ups of yerba-mate were first built in the VPlants software for three growth stages. Male and female plants grown in two contrasting environments (monoculture and forest understory) were considered. To model the dynamic 3D architecture of yerba-mate plants during the biennial growth interval between two subsequent prunings, data sets of branch development collected in 38 dates were used. The estimated values obtained from the mock-ups, including leaf photosynthesis and sexual dimorphism, are very close to those observed in the field. However, this similarity was limited to reconstructions that included growth units from original data sets. The modeling of growth dynamics enables the estimation of photosynthesis for the entire yerba mate plant, which is not easily measurable in the field. The InterpolMate software is efficient for building yerba mate mock-ups.
Resumo:
OBJETIVO: Reportar resultados de tratamentos do câncer de próstata com radioterapia conformada 3D realizados em uma única instituição. MATERIAIS E MÉTODOS: De julho de 1997 a janeiro de 2002, 285 pacientes consecutivos com câncer de próstata foram submetidos a radioterapia conformada 3D com dose mediana de 7.920 cGy na próstata e analisados retrospectivamente. A distribuição segundo o grupo de risco foi a seguinte: baixo risco - 95 (33,7%); risco intermediário - 66 (23,4%); alto risco - 121 (42,9%) pacientes. RESULTADOS: Em seguimento mediano de 53,6 meses (3,6-95,3 meses), sobrevidas atuariais global, causa específica, livre de metástases a distância e livre de recidiva bioquímica em cinco anos foram de 85,1%, 97,0%, 94,2% e 75,8%, respectivamente. Sobrevidas atuariais livre de toxicidade retal e urinária tardias em cinco anos foram de 96,4% e 91,1%, respectivamente. Ressecção transuretral pré-radioterapia conformada 3D e doses > 70 Gy em 30% do volume da bexiga implicaram maior toxicidade urinária tardia grau 2-3 em cinco anos (p = 0,0002 e p = 0,0264, respectivamente). CONCLUSÃO: A primeira experiência relatada de radioterapia conformada 3D no Brasil permitiu altas doses de radiação, com toxicidades retal e urinária aceitáveis. A existência de ressecção transuretral de próstata pré-radioterapia conformada 3D pode sinalizar maior risco de toxicidade urinária tardia grau 2-3 após irradiação. Restrição da dose < 70 Gy em 30% do volume da bexiga à tomografia de planejamento pode reduzir complicações urinárias tardias.
Resumo:
Abstract Objective: To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods: Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results: For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion: The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition.
Resumo:
Molecular Modeling is an important tool in drug design and it is very useful to predict biological activity from a library of compounds. A wide variety of computer programs and methods have been developed to visualize the tridimensional geometry and calculate physical properties of drugs. In this work, we describe a practical approach of molecular modeling as a powerful tool to study structure-activity relationships of drugs, including some antibacterials, hormones, cholinergic and adrenergic agents. At first, the students learn how to draw 3D structures and use them to perform conformational and molecular analysis. Thus, they compare drugs with similar pharmacological activity by superimposing one structure on the top of another and evaluate the geometry and physical properties.
Resumo:
A new model for the H2 antagonists binding site is postulated based on adsorption coefficient values of sixteen antagonists, in the affinities constants of the primary and secondary binding sites, and in the chemical characterization of these sites by 3D-QSAR. All study compounds are in the extended conformation and deprotonated form. The lateral validation of the QSARs, CoMFA analysis, affinity constants and chemical similarity data suggest that the antagonists block the proton pump in the H2 receptor interacting with two tyrosines - one in the helix 5, and other in the helix 6.
Resumo:
Alzheimer's disease (AD) is considered the main cause of cognitive decline in adults. The available therapies for AD treatment seek to maintain the activity of cholinergic system through the inhibition of the enzyme acetylcholinesterase. However, butyrylcholinesterase (BuChE) can be considered an alternative target for AD treatment. Aiming at developing new BuChE inhibitors, robust QSAR 3D models with high predictive power were developed. The best model presents a good fit (r²=0.82, q²=0.76, with two PCs) and high predictive power (r²predict=0.88). Analysis of regression vector shows that steric properties have considerable importance to the inhibition of the BuChE.
Resumo:
Total spectrofluorimetry associated to Principal Components Analysis (PCA) were used to classify into different groups the samples of diesel oil, biodiesel, vegetal oil and residual oil, as well as, to identify addition of non-transesterified residual vegetable oil, instead of biodiesel, to the diesel oil. Using this method, the samples of diesel oil, mixtures of biodiesel in diesel and mixtures of residual oil in diesel were separated into well-defined groups.
Resumo:
Molecular modeling enables the students to visualize the abstract relationships underlying theoretical concepts that explain experimental data on the molecular and atomic levels. With this aim we used the free software "Arguslab 4.0.1" (semi-empirical method) to study the reaction of 1-chloropropane with ethoxide in solution, known to lead to methyl propyl ether, through the S N2 mechanism, and propene, through the E2 mechanism. This tool allows users to calculate some properties (i. e. heat formation or electric charges) and to produce 3D images (molecular geometry, electrostatic potential surface, etc.) that render the comprehension of the factors underlying the reaction's progress, which are related to the structure of the reagents, and the process kinetic clearer and easier to understand by the students
Resumo:
Imide compounds have shown biological activity. These compounds can be easily synthesized with good yields. The objective of this paper was the rational planning of imides and sulfonamides with antinociceptive activity using the 3D-QSAR/CoMFA approach. The studies were performed using two data sets. The first set consisted of 39 cyclic imides while the second set consisted of 39 imides and 15 sulfonamides. The 3D- QSAR/CoMFA models have shown that the steric effect is important for the antinociceptive activity of imide and sulphonamide compounds. Ten new compounds with improved potential antinociceptive activity have been proposed by de novo design leapfrog simulations.
Resumo:
A novel heteronuclear 3d-4f compound having formula NdCu3L3·13H2O (where H3L = Schiff base derived from 5-bromosalicylaldehyde and glycylglycine and L³ = C11H8 N2O4Br) was obtained. It was characterized by elemental and thermal analyses and magnetic measurements. The Cu(II)-Nd(III) compound is stable up to 323 K. During dehydration process the water molecules are lost in two stages. The magnetic susceptibility data for this complex change with temperature according to the Curie-Weiss law with theta = -35 K. The magnetic moment values decrease from 5.00µB at 303 K to 4.38µB at 76 K.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
The implementation of local geodetic networks for georeferencing of rural properties has become a requirement after publication of the Georeferencing Technical Standard by INCRA. According to this standard, the maximum distance of baselines to GNSS L1 receivers is of 20 km. Besides the length of the baseline, the geometry and the number of geodetic control stations are other factors to be considered in the implementation of geodetic networks. Thus, this research aimed to examine the influence of baseline lengths higher than the regulated limit of 20 km, the geometry and the number of control stations on quality of local geodetic networks for georeferencing, and also to demonstrate the importance of using specific tests to evaluate the solution of ambiguities and on the quality of the adjustment. The results indicated that the increasing number of control stations has improved the quality of the network, the geometry has not influenced on the quality and the baseline length has influenced on the quality; however, lengths higher than 20 km has not interrupted the implementation, with GPS L1 receiver, of the local geodetic network for the purpose of georeferencing. Also, the use of different statistical tests, both for the evaluation of the resolution of ambiguities and for the adjustment, have enabled greater clearness in analyzing the results, which allow that unsuitable observations may be eliminated.