23 resultados para 090905 Photogrammetry and Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to verify if reflected energy of soils can characterize and discriminate them. A spectroradiometer (Spectral reflectance between: 400-2,500 nm) was utilized in laboratory. The soils evaluated are located in Bauru region, SP, Brazil, and are classified as Typic Argiudoll (TR), Typic Eutrorthox (LR), Typic Argiudoll (PE), Typic Haplortox (LE), Typic Paleudalf (PV) and Typic Quartzipsamment (AQ). They were characterized by their spectral reflectance as for descriptive conventional methods (Brazilian and International) according to the types of spectral curves. A method for the spectral descriptive evaluation of soils was established. It was possible to characterize and discriminate the soils by their spectral reflectance, with exception for LR and TR. The spectral differences were better identified by the general shape of spectral curves, by the intensity of band absorption and angle tendencies. These characteristics were mainly influenced by organic matter, iron, granulometry and mineralogy constituents. A reduction of iron and clay contents, which influenced higher reflectance intensity and shape variations, occurred on the soils LR/TR, PE, LE, PV and AQ, on that sequence. Soils of the same group with different clay textures could be discriminated. The conventional descriptive evaluation of spectral curves was less efficient on discriminating soils. Simulated orbital data discriminated soils mainly by bands 5 and 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.