287 resultados para coffee bean size
Resumo:
Decaffeinated coffee accounts for 10 percent of coffee sales in the world; it is preferred by consumers that do not wish or are sensitive to caffeine effects. This article presents an analytical comparison of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) methods for residual caffeine quantification in decaffeinated coffee in terms of validation parameters, costs, analysis time, composition and treatment of the residues generated, and caffeine quantification in 20 commercial samples. Both methods showed suitable validation parameters. Caffeine content did not differ statistically in the two different methods of analysis. The main advantage of the high performance liquid chromatography (HPLC) method was the 42-fold lower detection limit. Nevertheless, the capillary electrophoresis (CE) detection limit was 115-fold lower than the allowable limit by the Brazilian law. The capillary electrophoresis (CE) analyses were 30% faster, the reagent costs were 76.5-fold, and the volume of the residues generated was 33-fold lower. Therefore, the capillary electrophoresis (CE) method proved to be a valuable analytical tool for this type of analysis.
Resumo:
The objective of this study was to develop a pre-gelatinized flour using a mixture of broken rice and split beans by thermoplastic extrusion, and to evaluate the physicochemical, nutritional, and technological quality of the final product. The extrusion parameters were maintained using three heating zones with temperatures of 30 ºC, 40 ºC, and 70 ºC; screw speed of 177 rpm; feed rate of 257 g/m, and circular matrix of 3.85 mm. The following characterization analyses were performed: physicochemical, nutritional, water absorption index (WAI), water solubility index (WSI), and paste viscosity. The pre-gelatinized rice and bean flour had an intermediate value of WAI, 7.51 g/g, and high WSI value, 24.61%. Regarding proteins, it was verified an average content of 12.9% in the final product. The amino acid contents found in the pre-gelatinized flour indicate that the mixture has the essential amino acids. It was also found that the pre-gelatinized flour supplies more than 60% of the essential amino acids recommended for children aged one to three years old. The gelatinized flour composed of broken rice and split beans is an alternative to the use of these by-products of the manufacture process of rice and beans to obtain a product with viable technological characteristics and high nutritional value.
Resumo:
Organic coffee is characterized by being produced without the use of chemical products and by having a similar or superior quality in comparison to that of coffee produced by traditional methods. The production of organic coffee does not include the use of highly soluble nutrients, which makes consumers concerned with environmental issues and healthy eating habits realize its true value. This paper aims to analyze the influence of harvesting, peeling and drying on the quality of organic coffee, in order to present the best way of producing high quality coffee. Samples of organic coffee were harvested by both conventional and selective ways, and some were peeled. They were then dried on concrete patio and on suspended terraces. The beans were analyzed for potassium leaching, electrical conductivity, titratable acidity, and submitted to coffee cupping-test. The results obtained indicated that the selective harvesting of the peeled or unpeeled cherry coffee dried on concrete terrace is feasible for production of fine coffees. This type of processing effectively influenced the final quality of the organic coffee, thus being an alternative to improve the quality and market value of the product, especially for small producers, cooperatives, and associations of coffee producers.
Resumo:
Akara is one of Brazil's national treasures prepared from cowpea (Vigna unguiculata L.Walp), grated onions and salt and deep-fried in crude palm oil. The results of this study on akara preparation methods showed that, in general, cowpeas were soaked for up 3 hours at room temperature, and the seed coats were then removed. The akara makers preferred the olho de pombo cultivar, because of its cream hue, or the macassar cultivar because it produces a crispier paste. The seeds purchased from street markets had lower ranges of InsP6, InsP5, and InsP4 (1.03-7.62 ∝mol.g- 1; 0.14-1.31 ∝mol.g- 1; and 0.0-0.10 ∝mol.g- 1, respectively) than both the paste and akara (6.72-19.24 ∝mol.g- 1; 1.29-4.57 ∝mol.g- 1; 0.0-0.76 ∝mol.g- 1; 3.31-13.71 ∝mol.g- 1; 0.0-4.48 ∝mol.g- 1; and 0.0-1.32 ∝mol.g- 1). These results suggest that other beans or cowpea varieties have been used in the preparation of akara and that the phytate levels do not affect its nutritional quality.
Resumo:
Egg yolk was partially replaced (0, 25, 50, 75, and 100%) with octenyl succinic anhydride (OSA)-modified potato starch in a reduced-fat mayonnaise formulation to curtail the problems associated with high cholesterol and induced allergic reactions. The physicochemical properties included parameters such as: pH, fat content, and emulsion stability of the formulations analyzed. The samples with 75% and 100% egg yolk substitute showed the maximum emulsion stability (>95% after two of months storage), and they were selected according to cholesterol content, particle size distributions, dynamic rheological properties, microstructure, and sensory characteristic. A significant reduction (84-97%) in the cholesterol content was observed in the selected samples. Particle size analysis showed that by increasing the amount of OSA starch, the oil droplets with the peak size of 70 µm engulfed by this compound became larger. The rheological tests elucidated that in the absence of egg yolk, OSA starch may not result in a final product with consistent texture and that the best ratio of the two emulsifiers (OSA starch/egg yolk) to produce stable reduced-fat, low cholesterol mayonnaise is 75/25. The microscopic images confirmed the formation of a stable cohesive layer of starch surrounding the oil droplets emulsified in the samples selected.
Resumo:
Calcium chloride is widely used in industries as a firming agent, and also to extend shelf-life of vegetables. The aim of this study was to determine, the effect of different doses of calcium chloride on biochemical and color properties of fresh-cut green bean. Fresh-cut green beans were dipped for 90 seconds in 0.5%, 1%, 2% and 3% solution of calcium chloride at 25°C. The fresh-cut green bean samples were packaged in polystyrene foam dishes, wrapped with stretch film and stored in a cold room at 5±1°C temperature and 85-90% RH. Calcium chloride treatments did not retain the green color of samples. Whiteness index, browning index and total color difference (ΔE) values of CaCl2 treated samples were high. Saturation index and hue angle were low compared to the control, especially at higher doses of CaCl2. Polyphenol oxidase (PPO) enzyme activity in samples treated with CaCl2 at 3% doses, was low at the 7th days of storage than with other treatments. Fructose and sucrose content of samples increased in all treatment groups whereas glucose level decreased during the first 4th days of storage.
Resumo:
The aim of this study was to determine the physical and microbiological characteristics of extruded broken beans flour, in addition to developing mixtures for gluten-free cake with these flours, evaluating their technological and sensory quality. Gluten-free formulations were prepared with 45%, 60% and 75% of extruded broken beans. All analyzes of the flours and mixtures for cakes were performed according to standard techniques found in the literature. Sensory analyzes of cakes applied the 9-point structured hedonic scale. Results were submitted to variance analysis and comparison of means test (Tukey, p<0.05). The use of extruded broken beans improved the water absorbed and water solubility index of the mixtures for gluten-free cake, and for the lower viscosity and retrogradation when compared to the standard formulation. All cakes were accepted (rate ≥ 7) for all the analyzed attributes. From the technological and sensory standpoints, the development of gluten-free cake mixtures is feasible with up to 75% of extruded broken beans.
Resumo:
Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.
Resumo:
Abstract The objective of this work was to study the effect of enzymatic hydrolysis of black bean protein concentrate using different enzymes. Bean proteins were extracted and hydrolyzed over a period of 120 min using the enzymes pepsin or alcalase. The protein hydrolysates’ molecular weight was assayed by electrophoresis and the antioxidant activity was evaluated by the capturing methods of free radicals ABTS●+ and DPPH. Electrophoretic results showed that the bands above 50 kDa disappeared, when the beans protein was subjected to hydrolysis with pepsin. The bean protein hydrolysate obtained by hydrolysis with alcalase enzyme, showed higher antioxidant activity for inhibition of the radical ABTS●+. However, the hydrolysates obtained by hydrolysis with pepsin had higher antioxidant activity for inhibition of the radical DPPH. The use of pepsin and alcalase enzymes, under the same reaction time, produced black bean protein hydrolysates with different molecular weight profiles and superior antioxidant activity than the native bean protein.
Resumo:
Excess salts in the root zone inhibit water uptake by plants, affect nutrient uptake and may result in toxicities due to individual salts in the soil solution. Excess exchangeable sodium in the soil may destroy the soil structure to a point where water penetration and root aeration become impossible. Sodium is also toxic to many plants. Beans (Phaseolus vulgaris L.) are consumed as protein source in northeastern Brazil, although little is known about common bean cultivar tolerance to salinity. The germination of bean cultivars under salt stress was studied. The cultivars 'Carioca' and 'Mulatinho' were submitted to germination test in a germinator at 25ºC, at the Seed Analysis Laboratory of the Brazilian Agricultural Research Corporation unit in the Semi- Arid region (Embrapa Semi Árido), Petrolina, Pernambuco State. These seeds were germinated on "germitest" papers imbibed in distilled water or in 10, 50, 100 e 200 mol.m-3sodium chloride (NaCl) solutions. At the first and second counts of the germination test, normal seedlings were counted, measured, weighed and dried, supplying data for vigor, total germination, fresh matter weight and dry matter weight and seedlings length. Total protein was quantified in cotyledons at 3, 6 and 9 days after sowing. The results indicated that the NaCl content influenced seed germination and concentrations above 50 mol.m-3 decreased germination and seedling growth.
Resumo:
Castor bean cropping has great social and economic value, but its production has been affected by factors such as low quality seeds used for sowing. The quick and precise evaluation of seed quality by x-ray test is known as an effective method to evaluate seed lots, but little is known about the interpretation between of the type of radiographic image and the seed quality correlation. The potential of x-ray analysis as a marker of seed physiological quality and as an initial process for the implementation of the use of computer-assisted image analysis was investigated using castor bean seeds of the different cultivars. The seeds were classified according to internal morphology visualized in the radiography and subjected to the germination test, emergency and seedling growth rate. It was possible to identify the different types of internal tissues, morphological and physical damage in castor bean seeds using the x-ray test. Tissues generating translucent images, embryo deformation, or tissues with less than 50% of endosperm reserves or spotted, negatively affected the physiological potential of the seed lots. Radiographic analysis is effective as an instrument to improve castor bean seed lot quality. This non destructive analysis allows the prediction of seedling performance and enabled the selection of high-quality seeds under the standards of a sustainable and precision agriculture
Resumo:
A primary interest of image analysis of X-rayed seeds is to identify whether the extent of fill in the embryo cavity is associated with to seed physiological quality. The objective of this research was to verify the accuracy of the freely available Tomato Analyzer (TA) software developed at The Ohio State University to determine the ratio of embryo size over total seed area. Seeds of pumpkin, watermelon, cucumber and cotton were X-rayed and analyzed by the software which defines seed and embryo boundaries and automatically generates numerical values to quantify that ratio. Results showed that the TA has the sensitivity to evaluate the extent of embryo growth within the cucurbits and cotton seeds and is a promising alternative for this assessment in other seed species.
Resumo:
The effect of chemical and biological treatments on castor bean emergence, seedling vigor, dry matter production, and also the control of microorganisms associated with seeds of the AL Guarany 2002 and Lyra cultivars, was evaluated. The products tested were carbendazim + thiram, carboxin + thiram and a product based on Trichoderma. Total seed and seedling emergence were evaluated at 27 days after sowing whereas dry matter production was verified for plants removed 45 days after sowing. The Guarany 2002 AL cultivar had a higher incidence of microorganisms than the Lyra cultivar. The chemical treatment was 100% effective in controlling fungi but the biological treatment did not reduce microorganism incidence on the seeds. Chemical treatment resulted in plants with more dry matter and the best results were for carbendazim + thiram and carboxin + thiram at doses of 60 g + 140 g and 50 g + 50 g/100 kg of seeds, respectively. The carbendazim + thiram mixture was the only treatment which was statistically higher for total emergence whereas the biological treatment increased emergence only for the Lyra cultivar, thus demonstrating its lower efficiency. The importance of fungicides to control pathogens associated with seeds was discussed.
Resumo:
Coffee seeds have slow and irregular germination, losing fast their viability during storage, and the standard germination test of these seeds requires at least 30 days. Besides, the results may not reflect the actual physiological quality of these seeds. The objective of this work was to develop a fast and practical test for evaluating the viability of coffee seeds, which is based on the interpretation of different color hues of exudates from seeds. Coffee seeds of the cultivar Catuai 44 from six lots were submitted to germination, accelerated aging, and electrical conductivity tests. In the exudates color hue test, coffee seeds without the parchment and the silvery pellicle (four replications of 10 seeds each) were distributed on top of paper towels moistened and then maintained into a germinator, at 25 ºC for 24, 48, 72, 96, and 120 h. Three classes of color hues were established: colorless, light color hue, and dark color hue, assigning the values of 0, 1, and 3, for each class, respectively. The proposed exudates color hue test can be recommended for the fast assessment of viability for coffee seeds. The most promising results were obtained for seeds with 12% moisture content, after imbibition periods of 72, 96, and 120 h; and with 30% moisture content, after imbibition periods of 72 and 120 h.
Resumo:
In Brazil, although the coffee plantations are predominantly grown under full sunlight, the use of agroforestry systems can lead to socioeconomic advantages, thus providing a favorable environment to the crop by promoting its sustainability as well as environmental preservation. However, there is a lack of information on physiological quality of the coffee seeds produced under different levels of solar radiation. Within this context, the objective of this study was to evaluate the influence of different levels of solar radiation and maturation stages on the physiological quality of coffee (Coffea arabica L.) seeds, cv. Acaiá Cerrado MG-1474. Three levels of solar radiation (plants grown under full sunlight; under plastic screens of 35% shading; and under plastic screens of 50% shading) and three maturation stages (cherry, greenish-yellow and green) were assessed. Physiological quality of seeds was assessed by using germination test, first count of germination, abnormal seedlings, dead seeds, and seedlings with open cotyledonary leaves. Electrophoretic analysis of isoenzymes catalase, esterase, superoxide dismutase and peroxidase was also performed. With the evolution of development the coffee seeds presents increases on physiological quality, and at its beginning the seeds show improvements on quality with the reduction of solar radiation.