275 resultados para Tuberculosis therapy
Resumo:
Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC→ACC (Ser→Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100% of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.
Resumo:
Chemokines recruit and activate leukocytes, assisting granuloma formation. Herein, we evaluated plasma chemokines in patients with active tuberculosis (ATB) and after completing treatment (TTB) and compared them to BCG-vaccinated healthy controls (HC). Levels of chemokines were measured by cytometric bead array. Levels of CXCL8, CXCL9 and CXCL10 were higher in ATB patients compared to HC, but they decreased in TTB. Levels of CCL2 and CCL5 in ATB patients were similar to those observed in HC. Thus, the high levels of CXC-chemokines detected during ATB, which can modulate the trafficking of immune cells from the periphery to the site of infection, were reversed by anti-mycobacterial treatment.
Resumo:
The purpose of this review is to describe research findings regarding chronic Chagas disease in Argentina that have changed the standards of care for patients with Trypanosoma cruzi infection. Indirect techniques (serological tests) are still the main tools for the primary diagnosis of infection in the chronic phase, but polymerase chain reaction has been shown to be promising. The prognosis of patients with heart failure or advanced stages of chagasic cardiomyopathy is poor, but a timely diagnosis during the initial stages of the disease would allow for prescription of appropriate therapies to offer a better quality of life. Treatment of T. cruzi infection is beneficial as secondary prevention to successfully cure the infection or to delay, reduce or prevent the progression to disease and as primary disease prevention by breaking the chain of transmission. Current recommendations have placed the bulk of the diagnostic and treatment responsibility on the Primary Health Care System. Overall, the current research priorities with respect to Chagas disease should be targeted towards (i) the production of new drugs that would provide a shorter treatment course with fewer side effects; (ii) the development of new tools to confirm cure after a full course of treatment during the chronic phase and (iii) biomarkers to identify patients with a high risk of developing diseases.
Resumo:
Among the pathophysiological derangements operating in the chronic phase of Chagas disease, parasite persistence is likely to constitute the main mechanism of myocardial injury in patients with chronic chagasic cardiomyopathy. The presence of Trypanosoma cruzi in the heart causes a low-grade, but relentless, inflammatory process and induces myocardial autoimmune injury. These facts suggest that trypanocidal therapy may positively impact the clinical course of patients with chronic Chagas heart disease. However, the experimental and clinical evidence currently available is insufficient to support the routine use of etiologic treatment in these patients. The BENEFIT project - Benznidazole Evaluation for Interrupting Trypanosomiasis - is an international, multicenter, double-blind, placebo-controlled trial of trypanocidal treatment with benznidazole in patients with chronic Chagas heart disease. This project is actually comprised of two studies. The pilot study investigates whether etiologic treatment significantly reduces parasite burden, as assessed by polymerase chain reaction-based techniques and also determines the safety and tolerability profile of the trypanocidal drug in this type of chagasic population. The full-scale study determines whether antitrypanosomal therapy with benznidazole reduces mortality and other major cardiovascular clinical outcomes in patients with chronic Chagas heart disease.
Resumo:
One century after its discovery, Chagas disease, caused by the protozoan, Trypanosoma cruzi, remains a major health problem in Latin America. Mortality and morbidity are mainly due to chronic processes that lead to dysfunction of the cardiac and digestive systems. About one third of the chronic chagasic individuals have or will develop the symptomatic forms of the disease, with cardiomyopathy being the most common chronic form. This is a progressively debilitating disease for which there are no currently available effective treatments other than heart transplantation. Like in other cardiac diseases, tissue engineering and cell therapy have been investigated in the past few years as a means of recovering the heart function lost as a consequence of chronic damage caused by the immune-mediated pathogenic mechanisms elicited in individuals with chronic chagasic cardiomyopathy. Here we review the studies of cell therapy in animal models and patients with chronic Chagas disease and the perspectives of the recovery of the heart function lost due to infection with T. cruzi.