276 resultados para Hen´s eggs
Resumo:
ABSTRACT Male gladiator frogs of Hypsiboas Wagler, 1830 build nests on available substrate surrounding ponds and streams where female spawn eggs during the breeding period. Although gladiator frogs seem to show plasticity in the way they construct their nests, there is no study reporting if these species present preferences about microhabitat conditions for nest-building (mainly under subtropical climate). Predation pressure and environmental conditions have been considered major processes shaping the great diversity of reproductive strategies performed by amphibians, but microhabitat conditions should explain where to build a nest as well as how nest looks. This study aimed to test nest site selection for nest-building by Hypsiboas faber(Wied-Neuwied, 1821), determining which factors are related to nest site selection and nest features. The survey was conducted at margins of two permanent ponds in Southern Brazil. Habitat factors were evaluated in 18 plots with nest and 18 plots in the surrounding without nest (control), describing vegetation structure and heterogeneity, and substrate characteristics. Water temperature was measured inside the nest and in its adjacency. Nest features assessed were area, depth and temperature. Habitat characteristics differed between plots with and without nest. Microhabitat selected for nest-building was characterized by great vegetation cover and height, as well as shallower water and lower cover of organic matter in suspension than in plots without nest. Differences between temperature inside nest and in its adjacency were not observed. No relationship between nest features and habitat descriptors was evidenced. Results revealed that Hypsiboas faber does not build nests anywhere. Males seem to prefer more protected habitats, probably avoiding predation, invasion of conspecific males and inclement weather. Lack of differences between temperature inside- and outside-nest suggest that nest do not improve this condition for eggs and tadpole development. Nest architecture was not related to habitat characteristics, which may be determined by other factors, as nest checking by females before amplexus. Nest site selection should increase offspring survival as well the breeding success of Hypsiboas faber.
Resumo:
ABSTRACT The biology and morphology of the immature stages of Heliconius sara apseudes (Hübner, [1813]) are still little known. External features of the egg, larvae and pupa of H. sara apseudes are described and illustrated, based upon light and scanning electron microscopy. Eggs with smooth carina, first instar larva with scaly setae, and body of second to fifth instars covered with scattered pinnacles distinguish H. sara apseudes from other heliconiine species.
Resumo:
The author describes a case of liver ascaridiasis in a girl, 1 year old, who also presented intestinal parasitism by 54 adult specimens pf Ascaris lumbricoides. The hepatic lesions consisted in several abscesses containing living adult worms along with dead specimens and in the formation of an inflammatory condition with pronounced production of fibrous connective tissue and lymphocytic infiltration. Special attention is attracted by the fact of the existence of numerous eggs of Ascaris lumbricoides in the innermost of the inflammatory tissue. The inflammatory foci met with are closely connected with the biliary ducts; the presence of eggs of Ascaris lumbricoides is found even within the epithelium. Apart from the zones affected by the process of ascaridiasis, the hepatic tissue is seen to be well preserved.
Resumo:
In Brazil all the fishes belonging to the sub-family Curimatinae are called « saguirú ». The present work gives a biological study of the Curimatus elegans Steind., a small fish without any economical importance, which is to be found along the whole brazilian coast, down till Paraguay. The specimens utilized for the present study come from Fortaleza (Ceará, north-eastern Brazil). The C. elegans is « ilyophagus », that means, it feeds itself exclusively with those organic materials to be found in mud, specially with microscopical algae. The intestines are very extent, some of them measuring about 9 to 11 times body's length. Studies have been made about growth and age of the C. elegans; the biggest sizes found were of 153 mm. for females and 88 mm. for males. The C. elegans shows developed sexual glands during a long period (April to September). The movements of the spermatozoa, in contact with water is of 40 to 50 seconds of intense movements, ceasing after 70 to 100 seconds. In contact with 0.5% NaCl-solution spermatozoa show a big increase in movements-time, that can last till about 25 minutes. The eggs' diameter measures 0.70 to 0.73 mm., mature and hydrated it attains 0.93 to 1,00 mm. There is a certain correlation between the size of the body and the quantity of eggs. Big specimens can produce a total of 200.000 eggs. The average quantity contained in 1 gr. and 1 cc. is 6018 and 6229 eggs, respectively. Maturity and spawning in laboratory has been obtained due to injections of suspension of fish-hypophysis. Three or four hours after the injection, fishes show more movement and evident signs of excitation, proceeding spawning after 5 to 6 hours. Males, persecuting females, describe successive circles (merry-go-round) - carroussel), swimming side by side with females up to water's surface, where sexual products are start beating dry, for there is no blood yet. Circulation-scheme is to be found on fig. 4 and 5. The swim-bladder and the stomach are but delineated; the intestine is formed by a cylindric tube, all closed. At the place, where later on there will open the mouth, we find a group of ciliary hairs that produce a liquid current, very evident by the semi-circle formed by attached solid particles. After 36 hours, opening of the mouth and formation of the gill slits begin. At the age of 90 hours (4 mm.) the larvas swim well and start to feed themselves; the digestive tube is now all open and the swimbladder works already. During the first days of life, larvas have an adhesive organ situated at their frontal region (fig. 7) in form of a crescent, by means of which they hang to surrounding vegetation (fig. 6). When the larva begins to swim and to feed itself and its yolk are having been absorbed. the adhesive organ retracts and disappears. While larvas and alevins feed themselves with plancton, they have small eye-teeth, which disappear,. when fishes become « ilyophagus ». There exist too, during their life as larvas, pharyngeal-teeth. The lateral line appears in the larva after 16 to 18 days; more or less at the same time all fins are completely developed. Shortly after, first scales appear (20 to 23 days). Evolution of intestines twisting followed (fig. 9). Larvas show at different parts of their bodies small of organs excretory functions, that are constituted by bottons in serial disposition, every one with an excretory canal that opens towards the outside. These formations disappear suddenly when larvas attain their phase of alevin. The existence of a great number of said formations at the caudal fin (fig. 12) is of great interest. In our experiences of breeding we have employed several thousands of C. elegans larvas in different environs and we made conditions of surrounding change (illumination), depth of water, temperature, presence of sand at bottom of aquariums and without sand, food). In this way we could compare the results obtained, estimate the action of each factor for the realisation of a good bring-up of larvas.
Resumo:
The A. describes the life history of Flebotomus (Brumptomyia) travassosi Mangabeira, 1942. The paper deals with the morphology of the eggs, the larvae in all stages, the pupae and the female. Also gives the differences between the 3 known species of that subgenus (avellari, travassosi and guimarãisi) pointing out the characters in common, principally the presence of only two caudal hairs in all stages. The pupae do not present specifical characters.
Resumo:
The outbreak of the jungle or forest yellow fever, through the adapta¬tion, quite recently of the yellow fever virus o the forest mosquitoes, brou¬ght the necessity of ecological researches on hese mosquitoes, as well as on the wild animals they bite, some of them being susceptible to the desease. This has been done by the special yellow fever Service of the State of Sao Paulo, in a special Biological Station in Perús, São Paulo, which has been built in the midst of the jungle. This station was made with plain materials, and covered with straw, but was confortable enough for the technical work, i nthe early months of 1938. During the months in which the investigations were being carried on, the following interesting results were obtained: 1. As we have already pointed out in other places, the forest mosquitoes biting us during daytime, are always new born insects, having not yet sucked blood, as it is the general rule with all mosquitoes, and therefore also, with the anopheles and stegomyia, and this explains why nobody gets malaria or yellow fever, transmitted by anofeles or by aedes aegypti during the day. We think therefore, the jungle yellow fever, got during daytime is not due to the infected jungle or forest mosquito biting, but to infection through the human skin coming into close contact with tre virus, which the forest mosquitoes lay with their dejections, on the leaves of the trees where they remain sitting du¬ring the day. 2. As it is the rule with anopheles, stegomyia and other mosquitoes, the insects once having sucked blood, take nocturnal habits and, therefore, bite us, only during the night, so it happens with the forest mosquito, and insects with developped eggs and blood in stomach have been caught within the sta¬tion house, during the night. During the day, these mosquitoes do not bite, but remain quite still on the leaves of the trees, in the damp parts of the woods. 3. Jungle or forest mosquitoes can easely bite wild animals, some with more avidity then ethers, as it has bee npointed out to the opossum (didei-phis) and other animals. They also bite birds having very thin skin and only exceptionally, cold bloods animals. 5. Is has hot been possible to ascertain how forest mosquitoes are able to live, from onde season to another, through winter, when temperature drops near and even below zero. They have not been found in holes of the terrain, of trees and of animals, as it is the rule in cold countries. During winter, in the forest, it is possible to find larvs in the holes of bambus and trees full of water. As wild animals do not harbour the yellow fever virus for a long time in their body, it is diffcult to explain how the desease lasts from one season to another. Many ecological features on the mosquito, remains yet to be explained and therefore it in necessary to go on with the investigations, in bio¬logical stations, such as that one built up in Perús, São Paulo.