269 resultados para sleep laboratory
Resumo:
Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS) in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage) to male Wistar rats (3 months old, 200-250 g) 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water) during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001). The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist) or atropine (cholinergic antagonist). These drugs were administered 1 h prior to ethanol (3.5 g/kg) or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.
Resumo:
The effects of sleep disorders on the quality of life (QOL) have been documented in the literature. Excessive sleepiness and altered circadian rhythms may negatively affect ability to learn, employment, and interpersonal relations, and directly degrade QOL. The objective of the present study was to evaluate the impact of obstructive sleep apnea syndrome of varying severity on QOL. The study was conducted on 1892 patients aged 18 years or older referred by a physician to the Sleep Institute, São Paulo, with complaints related to apnea (snoring, excessive daytime sleepiness, hyperarousal, and fatigue). They were submitted to overnight polysomnography for the diagnosis of sleep disorders from August 2005 through April 2006. The patients completed the Epworth Sleepiness Scale and QOL SF-36 sleep questionnaires. They were classified as non-physically active and physically active and not-sleepy and sleepy and the results of polysomnography were analyzed on the basis of the apnea hypopnea index (AHI). The apneic subjects showed a reduction in QOL which was proportional to severity. There was a significant decrease in all domains (physical functioning, role physical problems, bodily pain, general health perceptions, vitality, social functioning, emotional problems, general mental health) for apneics with AHI >30, who generally were sleepy and did not participate in physical activities (P < 0.05). The present study provides evidence that the impact of sleep disorders on QOL in apneics is not limited to excessive daytime sleepiness and that physical activity can contribute to reducing the symptoms. Thus, exercise should be considered as an adjunct interventional strategy in the management of obstructive sleep apnea syndrome.
Resumo:
Inter-individual differences in the phase of the endogenous circadian rhythms have been established. Individuals with early circadian phase are called morning types; those with late circadian phase are evening types. The Horne and Östberg Morningness-Eveningness Questionnaire (MEQ) is the most frequently used to assess individual chronotype. The distribution of MEQ scores is likely to be biased by several fact, ors, such as gender, age, genetic background, latitude, and social habits. The objective of the present study was to determine the effect of different social synchronizers on the sleep/wake cycle of persons with different chronotypes. Volunteers were selected from a total of 1232 UFPR undergraduate students who completed the MEQ. Thirty-two subjects completed the study, including 8 morning types, 8 evening types and 16 intermediate types. Sleep schedules were recorded by actigraphy for 1 week on two occasions: during the school term and during vacation. Sleep onset and offset times, sleep duration, and mid-sleep time for each chronotype group were compared by the Mann-Whitney U-test separately for school term and vacation. School term and vacation data were compared by the Wilcoxon matched-pair test. Morning types showed earlier sleep times and longer sleep duration compared with evening types (23:00 ± 44 and 508.9 ± 50.27 vs 01:08 ± 61.95 and 456.44 ± 59.08, for the weekdays during vacation). During vacation, the subjects showed later sleep times, except for the morning types, who did not exhibit differences for sleep onset times. The results support the idea that social schedules have an impact on the expression of circadian rhythmicity but this impact depends on the individual chronotype.
Resumo:
Disturbed sleep is common in chronic obstructive pulmonary disease (COPD). Conventional hypnotics worsen nocturnal hypoxemia and, in severe cases, can lead to respiratory failure. Exogenous melatonin has somnogenic properties in normal subjects and can improve sleep in several clinical conditions. This randomized, double-blind, placebo-controlled study was carried out to determine the effects of melatonin on sleep in COPD. Thirty consecutive patients with moderate to very severe COPD were initially recruited for the study. None of the participants had a history of disease exacerbation 4 weeks prior to the study, obstructive sleep apnea, mental disorders, current use of oral steroids, methylxanthines or hypnotic-sedative medication, nocturnal oxygen therapy, and shift work. Patients received 3 mg melatonin (N = 12) or placebo (N = 13), orally in a single dose, 1 h before bedtime for 21 consecutive days. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI) and daytime sleepiness was measured by the Epworth Sleepiness Scale. Pulmonary function and functional exercise level were assessed by spirometry and the 6-min walk test, respectively. Twenty-five patients completed the study protocol and were included in the final analysis. Melatonin treatment significantly improved global PSQI scores (P = 0.012), particularly sleep latency (P = 0.008) and sleep duration (P = 0.046). No differences in daytime sleepiness, lung function and functional exercise level were observed. We conclude that melatonin can improve sleep in COPD. Further long-term studies involving larger number of patients are needed before melatonin can be safely recommended for the management of sleep disturbances in these patients.
Resumo:
We have tested the hypothesis that restless leg syndrome (RLS) is related to quality of sleep, fatigue and clinical disability in multiple sclerosis (MS). The diagnosis of RLS used the four minimum criteria defined by the International Restless Legs Syndrome Study Group. Fatigue was assessed by the Fatigue Severity Scale (FSS >27), quality of sleep by the Pittsburgh Sleep Quality Index (PSQI >6), excessive daytime sleepiness by the Epworth Sleepiness Scale (ESS >10) and clinical disability by the Expanded Disability Status Scale (EDSS). Forty-four patients (32 women) aged 14 to 64 years (43 ± 14) with disease from 0.4 to 23 years (6.7 ± 5.9) were evaluated. Thirty-five were classified as relapsing-remitting, 5 as primary progressive and 4 as secondary progressive. EDSS varied from 0 to 8.0 (3.6 ± 2.0). RLS was detected in 12 cases (27%). Patients with RLS presented greater disability (P = 0.01), poorer sleep (P = 0.02) and greater levels of fatigue (P = 0.03). Impaired sleep was present in 23 (52%) and excessive daytime sleepiness in 3 cases (6.8%). Fatigue was present in 32 subjects (73%) and was associated with clinical disability (P = 0.000) and sleep quality (P = 0.002). Age, gender, disease duration, MS pattern, excessive daytime sleepiness and the presence of upper motor neuron signs were not associated with the presence of RLS. Fatigue was best explained by clinical disability and poor sleep quality. Awareness of RLS among health care professionals may contribute to improvement in MS management.
Resumo:
Our aim was to determine if anatomical abnormalities of the upper airway (UA) and facial skeleton of class III severely obese patients are related to the presence and severity of obstructive sleep apnea syndrome (OSAS). Forty-five patients (69% females, mean age 46.5 ± 10.8 years) with a body mass index (BMI) over 40 kg/m² underwent UA and facial skeletal examinations as well as polysomnography. Mean BMI was 49 ± 7 kg/m² and mean neck circumference was 43.4 ± 5.1 cm. Polysomnographic findings showed that 22% had a normal apnea-hypopnea index (AHI) and 78% had an AHI over 5. The presence of OSAS was associated with younger age (P = 0.02), larger neck circumference (P = 0.004), presence of a voluminous lateral wall (P = 0.0002), posteriorized soft palate (P = 0.0053), thick soft palate (P = 0.0014), long uvula (P = 0.04), thick uvula (P = 0.0052), and inferior turbinate hypertrophy (P = 0.04). A larger neck circumference (P = 0.02), presence of a voluminous lateral wall (P = 0.04), posteriorized soft palate (P = 0.03), and thick soft palate (P = 0.04) were all associated with OSAS severity. The prevalence of OSAS in this group was high. A larger neck circumference and soft tissue abnormalities of the UA were markers for both the presence and severity of OSAS. Conversely, no abnormalities in the facial skeleton were associated with OSAS in patients with morbid obesity.
Resumo:
Sleep disturbances have far-reaching effects on the neuroendocrine and immune systems and may be linked to disease manifestation. Sleep deprivation can accelerate the onset of lupus in NZB/NZWF1 mice, an animal model of severe systemic lupus erythematosus. High prolactin (PRL) concentrations are involved in the pathogenesis of systemic lupus erythematosus in human beings, as well as in NZB/NZWF1 mice. We hypothesized that PRL could be involved in the earlier onset of the disease in sleep-deprived NZB/NZWF1 mice. We also investigated its binding to dopaminergic receptors, since PRL secretion is mainly controlled by dopamine. Female NZB/NZWF1 mice aged 9 weeks were deprived of sleep using the multiple platform method. Blood samples were taken for the determination of PRL concentrations and quantitative receptor autoradiography was used to map binding of the tritiated dopaminergic receptor ligands [³H]-SCH23390, [³H]-raclopride and [³H]-WIN35,428 to D1 and D2 dopaminergic receptors and dopamine transporter sites throughout the brain, respectively. Sleep deprivation induced a significant decrease in plasma PRL secretion (2.58 ± 0.95 ng/mL) compared with the control group (25.25 ± 9.18 ng/mL). The binding to D1 and D2 binding sites was not significantly affected by sleep deprivation; however, dopamine transporter binding was significantly increased in subdivisions of the caudate-putamen - posterior (16.52 ± 0.5 vs 14.44 ± 0.6), dorsolateral (18.84 ± 0.7 vs 15.97 ± 0.7) and ventrolateral (24.99 ± 0.5 vs 22.54 ± 0.7 µCi/g), in the sleep-deprived mice when compared to the control group. These results suggest that PRL is not the main mechanism involved in the earlier onset of the disease observed in sleep-deprived NZB/NZWF1 mice and the reduction of PRL concentrations after sleep deprivation may be mediated by modifications in the dopamine transporter sites of the caudate-putamen.
Resumo:
Studies have shown that the frequency or worsening of sleep disorders tends to increase with age and that the ability to perform circadian adjustments tends to decrease in individuals who work the night shift. This condition can cause consequences such as excessive sleepiness, which are often a factor in accidents that occur at work. The present study investigated the effects of age on the daytime and nighttime sleep patterns using polysomnography (PSG) of long-haul bus drivers working fixed night or day shifts. A total of 124 drivers, free of sleep disorders and grouped according to age (<45 years, N = 85, and ≥45 years, N = 39) and PSG timing (daytime (D) PSG, N = 60; nighttime (N) PSG, N = 64) participated in the study. We observed a significant effect of bedtime (D vs N) and found that the length of daytime sleep was shorter [D: <45 years (336.10 ± 73.75 min) vs N: <45 years (398 ± 78.79 min) and D: ≥45 years (346.57 ± 43.17 min) vs N: ≥45 years (386.44 ± 52.92 min); P ≤ 0.05]. Daytime sleep was less efficient compared to nighttime sleep [D: <45 years (78.86 ± 13.30%) vs N: <45 years (86.45 ± 9.77%) and D: ≥45 years (79.89 ± 9.45%) and N: ≥45 years (83.13 ± 9.13%); P ≤ 0.05]. An effect of age was observed for rapid eye movement sleep [D: <45 years (18.05 ± 6.12%) vs D: ≥45 years (15.48 ± 7.11%) and N: <45 years (23.88 ± 6.75%) vs N: ≥45 years (20.77 ± 5.64%); P ≤ 0.05], which was greater in younger drivers. These findings are inconsistent with the notion that older night workers are more adversely affected than younger night workers by the challenge of attempting to rest during the day.
Resumo:
The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.
Resumo:
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students’ concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students’ opinions about the characteristics of a successful researcher. Students’ difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.
Resumo:
Pain and sleep share mutual relations under the influence of cognitive and neuroendocrine changes. Sleep is an important homeostatic feature and, when impaired, contributes to the development or worsening of pain-related diseases. The aim of the present review is to provide a panoramic view for the generalist physician on sleep disorders that occur in pain-related diseases within the field of Internal Medicine, such as rheumatic diseases, acute coronary syndrome, digestive diseases, cancer, and headache.
Resumo:
Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.
Resumo:
The duties of humans toward non-human animals and their rights in society have been debated for a long time. However, a discussion on the terminology used for the identification of laboratory animals is usually not considered, although the employment of inadequate terminology may generate disastrous consequences for the animals before, during, and after the experiment. This study intends to defend the use of appropriate terminology, call attention to an unethical attitude of certain professionals when dealing with experimental animals, and also propose operational mechanisms, which allow for those distortions to be corrected.
Resumo:
Whether sleep problems of menopausal women are associated with vasomotor symptoms and/or changes in estrogen levels associated with menopause or age-related changes in sleep architecture is unclear. This study aimed to determine if poor sleep in middle-aged women is correlated with menopause. This study recruited women seeking care for the first time at the menopause outpatient department of our hospital. Inclusion criteria were an age ≥40 years, not taking any medications for menopausal symptoms, and no sleeping problems or depression. Patients were assessed with the Pittsburgh Sleep Quality Index (PSQI), modified Kupperman Index (KI), and Menopause Rating Scale (MRS). A PSQI score of <7 indicated no sleep disorder and ≥7 indicated a sleep disorder. Blood specimens were analyzed for follicle-stimulating hormone and estradiol levels. A total of 244 women were included in the study; 103 (42.2%) were identified as having a sleep disorder and 141 as not having one. In addition, 156 (64%) women were postmenopausal and 88 (36%) were not menopausal. Follicle-stimulating hormone and estradiol levels were similar between the groups. Patients with a sleep disorder had a significantly higher total modified KI score and total MRS score (both, P<0.001) compared with those without a sleep disorder. Correlations of the PSQI total score with the KI and MRS were similar in menopausal and non-menopausal women. These results do not support that menopause per se specifically contributes to sleep problems.