338 resultados para Bovine tuberculosis
Resumo:
The purpose of this study was to evaluate the efficacy of orally administered albendazole sulphoxide and pour-on ivermectin for the treatment of bovine parasitic otitis caused by rhabditiform nematodes. Eighteen Gyr cows presenting clinical otitis were divided in three groups with six animals each. The first one did not receive any treatment (control group). The second one was treated with 0.5% pour-on ivermectin, 500µg/kg of body weight, and the third group was treated with oral 6% albendazole sulphoxide, at 6.0mg/kg. Both ear canals of each animal were reexamined on days 7 and 21 post treatment. The animals in the control group remained infected throughout the days of observation. Ivermectin treatment did not show effectiveness on days 7 or 21 post treatment. The albendazole sulphoxide treatment had an efficacy of 16.7 and 25% on days 7 and 21, respectively. Further studies are required to assess an effective treatment for this parasitic disease, especially via alternative administration routes, because of its significant impact on Bos taurus indicus cattle breeding in Tropical and Subtropical Regions.
Resumo:
Bovine herpesvirus type 5 (BoHV-5) is a major cause of viral meningoencephalitis in cattle. The expression of different viral proteins has been associated with BoHV-5 neuropathogenesis. Among these, gI, gE and US9 have been considered essential for the production of neurological disease in infected animals. To evaluate the role of gI, gE and US9 in neurovirulence, a recombinant from which the respective genes were deleted (BoHV-5 gI-/gE-/US9-) was constructed and inoculated in rabbits of two age groups (four and eight weeks-old). When the recombinant virus was inoculated through the paranasal sinuses of four weeks-old rabbits, neurological disease was observed and death was the outcome in 4 out of 13 (30.7 %) animals, whereas clinical signs and death were observed in 11/13 (84.6%) of rabbits infected with the parental virus. In eight weeks-old rabbits, the BoHV-5 gI-/gE-/US9- did not induce clinically apparent disease and could not be reactivated after dexamethasone administration, whereas wild type BoHV-5 caused disease in 55.5% of the animals and was reactivated. These findings reveal that the simultaneous deletion of gI, gE and US9 genes did reduce but did not completely abolish the neurovirulence of BoHV-5 in rabbits, indicating that other viral genes may also play a role in the induction of neurological disease.
Resumo:
Venereal infection of seronegative heifers and cows with bovine herpesvirus type 1.2 (BoHV-1.2) frequently results in vulvovaginitis and transient infertility. Parenteral immunization with inactivated or modified live BoHV-1 vaccines often fails in conferring protection upon genital challenge. We herein report an evaluation of the immune response and protection conferred by genital vaccination of heifers with a glycoprotein E-deleted recombinant virus (SV265gE-). A group of six seronegative heifers was vaccinated with SV265gE- (0,2mL containing 10(6.9)TCID50) in the vulva submucosa (group IV); four heifers were vaccinated intramuscularly (group IM, 1mL containing 10(7.6)TCID50) and four heifers remained as non-vaccinated controls. Heifers vaccinated IV developed mild, transient local edema and hyperemia and shed low amounts of virus for a few days after vaccination, yet a sentinel heifer maintained in close contact did not seroconvert. Attempts to reactivate the vaccine virus in two IV vaccinated heifers by intravenous administration of dexamethasone (0.5mg/kg) at day 70 pv failed since no virus shedding, recrudescence of genital signs or seroconversion were observed. At day 70 pv, all vaccinated and control heifers were challenged by genital inoculation of a highly virulent BoHV-1.2 isolate (SV56/90, 10(7.1)TCID50/animal). After challenge, virus shedding was detected in genital secretions of control animals for 8.2 days (8-9); in the IM group for 6.2 days (4-8 days) and during 5.2 days (5-6 days) in the IV group. Control non-vaccinated heifers developed moderate (2/4) or severe (2/4) vulvovaginitis lasting 9 to 13 days (x: 10.7 days). The disease was characterized by vulvar edema, vulvo-vestibular congestion, vesicles progressing to coalescence and erosions, fibrino-necrotic plaques and fibrinopurulent exudate. IM vaccinated heifers developed mild (1/3) or moderate (3/4) genital lesions, lasting 10 to 12 days (x: 10.7 days); and IV vaccinated heifers developed mild and transient vulvovaginitis (3/4) or mild to moderate genital lesions (1/4). In the IV group, the clinical signs lasted 4 to 8 days (x: 5.5 days). Clinical examination of the animals after challenge revealed that vaccination by both routes conferred some degree of protection, yet IV vaccination was clearly more effective in reducing the severity and duration of clinical disease. Furthermore, IV vaccination reduced the period of virus shedding in comparison with both groups. Taken together, these results demonstrate that SV265gE- is sufficiently attenuated upon IV vaccination in a low-titer dosis, is not readily reactivated after corticosteroid treatment and lastly, and more importantly, confers local protection upon challenge with a high titer of a virulent heterologous BoHV-1 isolate. Therefore, the use of this recombinant for genital immunization may be considered for prevention of BoHV-1-associated genital disease in the field.
Resumo:
The immunogenicity of an inactivated, experimental vaccine based on a bovine herpesvirus type 5 strain defective in thymidine kinase and glycoprotein E (BoHV-5 gE/TKΔ) was evaluated in cattle and the results were compared with a vaccine containing the parental BoHV-5 strain (SV507/99). To formulate the vaccines, each virus (wildtype SV507/99 and BoHV-5 gE/TK∆) was multiplied in cell culture and inactivated with binary ethyleneimine (BEI). Each vaccine dose contained approximately of 10(7.5) TCID50 of inactivated virus mixed with an oil-based adjuvant (46:54). Forty calves, 6 to 9-months-old, were allocated into two groups of 20 animals each and vaccinated twice (days 0 and 22pv) by the subcutaneous route with either vaccine. Serum samples collected at day 0 and at different intervals after vaccination were tested for virus neutralizing (VN) antibodies against the parental virus and against heterologous BoHV-5 and BoHV-1 isolates. The VN assays demonstrated seroconversion to the respective homologous viruses in all vaccinated animals after the second vaccine dose (mean titers of 17.5 for the wildtype vaccine; 24.1 for the recombinant virus). All animals remained reagents up to day 116 pv, yet showing a gradual reduction in VN titers. Animals from both vaccine groups reacted in similar VN titers to different BoHV-1 and BoHV-5 isolates, yet the magnitude of serological response of both groups was higher against BoHV-5 field isolates. Calves vaccinated with the recombinant virus did not develop antibodies to gE as verified by negative results in a gE-specific ELISA, what would allow serological differentiation from naturally infected animals. Taken together, these results indicate that inactivated antigens of BoHV-5 gE/TK recombinant virus induced an adequate serological response against BoHV-5 and BoHV-1 and thus can be used as an alternative, differential vaccine candidate.
Resumo:
The serum neutralization (SN) test is the gold standard method to measure neutralizing antibodies to bovine herpesviruses. However, in view of the further subdivisions of bovine herpesviruses in types/subtypes, defining which virus to use at challenge in SN tests may be difficult. In view of that, this study was carried out to re-evaluate (SN) sensitivity with different types/subtypes of bovine herpesviruses types 1 (BoHV-1) and 5 (BoHV-5) as challenge viruses. Bovine sera (n=810) were collected from two distinct geographic regions and tested by SN with three type 1 viruses (BoHV-1.1 strains "Los Angeles" and "EVI123/98"; BoHV-1.2a strain "SV265/96") and three type 5 viruses (BoHV-5a strain "EVI88/95"; BoHV-5b strain "A663" and BoHV-5c "ISO97/95"). SN tests were performed with a 1 hour incubation of the serum-virus mixtures at 37ºC against 100 TCID50 of each of the viruses. SN sensitivity varied greatly depending on the challenge virus used in the test. The highest sensitivity (327 positive/810 total sera tested; 40.37%) was attained when the positive results to the six viruses were added together. No association could be found between any particular type or subtype of virus and the sensitivity of the test. When positive results to each single strain were considered, SN sensitivity varied from 41.7% to 81.7%, depending on the virus and the geographic region of origin of the sera. Variation was detected even when challenge viruses belonged to the same subtype, where disagreement between positive results reached 41%. These results indicate that one hour incubation SN tests against single viruses, as performed here, may display a significantly low sensitivity (p=0.05); performing SN tests against a number of different viruses may increase considerably SN sensitivity. Furthermore, the choice of virus used for challenge is critical in SN tests. In addition, sera from different geographic regions may give rise to disagreeing results with different strains of BoHV-1 and BoHV-5. This might be particularly relevant for control programs and in international trade, were maximum sensitivity should be targeted.
Resumo:
The objective of this study was to evaluate the effect of medroxy-progesterone acetate (MAP) with or without estradiol benzoate (EB) on follicular growth during the estrous cycle in cattle. In the first experiment, Hereford cows were synchronized with a synthetic analogue of PGF2 alpha and were treated with two different doses of MAP (250 or 500 mg) with or without EB for 7 days starting on day 8 of the estrous cycle. Follicular growth was inhibited (P<0.05) in all cows except controls and those receiving 250mg MAP without EB. Seventy-five percent of the animals (15/20) showed estrus on days 21 and 22 of the cycle rather than at MAP withdrawal, demonstrating that these treatments did not induce estrus. To determine whether the EB treatment altered endometrial sensitivity to oxytocin and thus the luteolytic cascade, multiparous pre-synchronized cows received 5 mg of EB followed 6 hours later with 50 IU of oxytocin (OT; n=9). Eight hours after EB injection, endometrial fragments were collected from the cows on days 4, 13 and 17 of the estrous cycle and COX-2 gene expression was measured by PCR. EB increased COX-2 mRNA levels only on day 17 of the estrous cycle (P<0.05). In conclusion, MAP alone or associated with EB is able to suppress bovine follicular growth. However, EB in the presence of MAP is not efficient to induce luteolysis in cows when injected on day 8 of the estrous cycle.
Resumo:
The umbilical cord blood (UCB) is an important source of pluripotent stem cells, which motivated researches on ontogeny and transplantation. The morphological characterization of umbilical cord cells is the first step to establish subsequent experiments on these areas. Although some information on humans can be found, no data on UCB is available for bovines. Therefore, this work is the first attempt to conduct an ultrastructural characterization of bovine umbilical cord blood. Blood was collected from the umbilical cord of twenty fetuses by punction of the umbilical vein. Samples were processed for whole leucocytes observation by centrifugation and the buffy coat was collected. Cells were washed and pelleted and prepared according to the standard protocol of the transmission electron microscopy. The presence of cells with morphologic characteristics compatible with the precursors from the erythrocytic, neutrophilic, eosinophilic, basophilic, and lymphocytic lineages was observed. Atypical cells with peculiar morphological features, strongly similar to apoptotic cells, were seen. Bovine neutrophils with three types of cytoplasmic granules were also found in the blood. The ultrastructural characteristics of observed bovine UCB cells where similar to those found in other species, suggesting that bovines could possibly constitute an experimental model for approaches on UCB cells research.
Resumo:
Bovine genital campylobacteriosis is a common venereal disease of cattle; the prevalence of this disease can be underestimated mostly because of the nature of the etiological agent, the microaerobic Campylobacter fetus subspecies venerealis. The purpose of the current study was to evaluate the utilization of polymerase chain reaction (PCR) in the diagnosis of genital campylobacteriosis in samples obtained from bull prepuce aspirate, cow cervical mucus, and abomasum contents of aborted fetuses, collected into enrichment medium. Five different DNA extraction protocols were tested: thermal extraction, lysis with proteinase K, lysis with guanidine isothiocyanate, lysis with DNAzol, and lysis with hexadecyltrimethylammonium bromide (CTAB). The specificity, sensitivity, and technical application of the PCR assay were also evaluated with clinical samples and compared to bacterial isolation by standard culture. DNA extraction by the CTAB protocol provided better results in PCR, and it was able to detect 63 colony-forming units per ml of C. fetus. Out of 277 clinical samples tested, 68 (24%) were positive for Campylobacter fetus using PCR, while only 8 (2.8%) of the samples were positive by bacterial isolation in solid medium, proving the superiority of the PCR technique when compared to the standard isolation method, and providing evidence for its usefulness as a better screening test in cattle for the diagnosis of bovine genital campylobacteriosis.
Resumo:
Pregnant cows infected with noncytopathic (NCP) isolates of bovine viral diarrhea virus (BVDV) between days 40 and 120 days of gestation frequently deliver immunotolerant, persistently infected (PI) calves. We herein report the characterization of PI calves produced experimentally through inoculation of pregnant cows with a pool of Brazilian BVDV-1 (n=2) and BVDV-2 isolates (n=2) between days 60 and 90 of gestation. Two calves were born virus positive, lacked BVDV antibodies, but died 7 and 15 days after birth, respectively. Six other calves were born healthy, seronegative to BVDV, harbored and shed virus in secretions for up to 210 days. Analysis of the antigenic profile of viruses infecting these calves at birth and 30 days later with a panel of monoclonal antibodies indicated two patterns of infection. Whereas three calves apparently harbored only one isolate (either a BVDV-1 or BVDV-2), co-infection by two antigenically distinct challenge viruses was demonstrated in three PI calves. Moreover, testing the viruses obtained from the blood of PI calves by an RT-PCR able to differentiate between BVDV-1 and BVDV-2 confirmed the presence/persistence of two co-infecting viruses of different genotypes (BVDV-1 and BVDV-2) in these animals. These findings indicate that persistent infection of fetuses/calves - a well characterized consequence of fetal infection by BVDV - may be established concomitantly by more than one isolate, upon experimental inoculation. In this sense, mixed persistent infections with antigenically distinct isolates may help in understanding the immunological and molecular basis of BVDV immunotolerance and persistence.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.
Resumo:
Mutant viral strains deleted in non-essential genes represent useful tools to study the function of specific gene products in the biology of the virus. We herein describe an investigation on the phenotype of a bovine herpesvirus 5 (BoHV-5) recombinant deleted in the gene encoding the enzyme thymidine kinase (TK) in rabbits, with special emphasis to neuroinvasiveness and the ability to establish and reactivate latent infection. Rabbits inoculated with the parental virus (SV-507/99) (n=18) at a low titer (10(5.5)TCID50) shed virus in nasal secretions in titers up to 10(4.5)TCID50 for up to 12 days (average: 9.8 days [5-12]) and 5/ 16 developed neurological disease and were euthanized in extremis. Rabbits inoculated with the recombinant BoHV-5TKΔ at a high dose (10(7.1)TCID50) also shed virus in nasal secretions, yet to lower titers (maximum: 10(2.3)TCID50) and for a shorter period (average: 6.6 days [2-11]) and remained healthy. PCR examination of brain sections of inoculated rabbits at day 6 post-infection (pi) revealed a widespread distribution of the parental virus, whereas DNA of the recombinant BoHV-5TKΔ-was detected only in the trigeminal ganglia [TG] and olfactory bulbs [OB]. Nevertheless, during latent infection (52pi), DNA of the recombinant virus was detected in the TGs, OBs and also in other areas of the brain, demonstrating the ability of the virus to invade the brain. Dexamethasone (Dx) administration at day 65 pi was followed by virus reactivation and shedding by 5/8 rabbits inoculated with the parental strain (mean duration of 4.2 days [1 - 9]) and by none of seven rabbits inoculated with the recombinant virus. Again, PCR examination at day 30 post-Dx treatment revealed the presence of latent DNA in the TGs, OBs and in other areas of the brain of both groups. Taken together, these results confirm that the recombinant BoHV-5TKΔ is highly attenuated for rabbits. It shows a reduced ability to replicate in the nose but retains the ability to invade the brain and to establish latent infection. Additional studies are underway to determine the biological and molecular mechanisms underlying the inability of BoHV-5TKΔ to reactivate from latency.
Resumo:
The aim of this study was to determine the prevalence of anti-Leptospira spp. antibodies and the risk factors for Leptospira spp. infection in breeding cattle herds in the south central region of Paraná state. It was based on the statistic delineation/serological samples and information regarding the selected farms employed in the study of bovine brucellosis for Paraná state in the context of National Program for Control and Eradication of Brucellosis and Tuberculosis. A total of 1.880 females aged >24 months from 274 non vaccinated herds were studied. Serum samples were tested for antibodies against Leptospira spp. using microscopic agglutination test (MAT) with 22 Leptospira serovars. The epidemiological questionnaire was applied on all the selected farms and aimed to obtain epidemiological data. Hundred eighty one of 274 herds were positive for Leptospira spp./presenting prevalence of positive herds of 66.06% (IC95%=60.12-71,65%). Presence of >43 cattle (OR=3.120; IC=1.418-6.867)/animal purchase (OR=2.010; IC=1.154-3.500)/rent of pastures (OR=2.925; IC=1.060-8.068) and presence of maternity paddock (OR=1.981; IC=1,068-3,676) were identified as risk factors for leptospirosis due to any serovar in the multivariate logistic regression. Risk factors for leptospirosis due to serovar Hardjo were presence of >43 cattle (OR=3.622; IC=1.512-8,677)/animal purchase (OR=3.143; IC=1.557-6.342)/rent of pastures (OR=4.070; IC=1.370-12.087) and presence of horses (OR=2.981; IC=1.321-6.726). These results indicate that Leptospira spp. infection is widespread in the south central region of Paraná state and that factors related to the herd characteristic and management are associated with the infection.
Resumo:
Rotavirus is an important cause of neonatal diarrhea in humans and several animal species, including calves. A study was conducted to examine 792 fecal samples collected from calves among 65 dairy and beef herds distributed in two of Brazil's major livestock producing regions, aiming to detect the occurrence of rotavirus and perform a molecular characterization of the rotavirus according to G and P genotypes in these regions. A total of 40 (5.05%) samples tested positive for rotavirus by the polyacrylamide gel electrophoresis (PAGE) technique. The molecular characterization was performed by multiplex semi-nested RT-PCR reactions, which indicated that the associations of genotypes circulating in herds in Brazil's southeastern region were G6P[11], G10P[11], G[-]P[5] + [11], G[-]P[6] in the state of São Paulo and G6P[11], G8P[5], G11P[11], G10P[11] in the state of Minas Gerais. In the central-western region, the genotypes G6P[5] + [11], G6P[5], G8P[-], G6P[11], G [-] P[1], G[-] P[11], and G[-] P[5] were detected in the state of Goiás, while the genotypes G6P[5], G8[P11], G6[P11], G8[P1], G8[P5], G6[P1] were circulating in herds in the state of Mato Grosso do Sul. The genotypic diversity of bovine rotavirus found in each region under study underlines the importance of characterizing the circulating samples in order to devise the most effective prophylactic measures.
Resumo:
The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS) species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%), all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100). It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.
Resumo:
Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC). The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.