270 resultados para tropical soil properties
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
ABSTRACT High contents of plant-available selenium in the soil in the form of selenate, resulting from natural or anthropogenic action, jeopardizes agricultural areas and requires research for solutions to establish or re-establish agricultural or livestock operation, avoiding the risk of poisoning of plants, animals and humans. The purpose was to evaluate sulfur sources in the form of sulfate, e.g., ammonium sulfate, calcium sulfate, ferric sulfate, in the remediation of tropical soils anthropogenically contaminated with Se under the tropical forage grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf cv. Marandu. More clayey soils are less able to supply plants with Se, which influences the effects of S sources, but it was found that high soil Se concentrations negatively affected forage biomass production, regardless of the soil. Of the tested S sources, the highly soluble ammonium sulfate and ferric sulfate reduced plant Se uptake and raised the available sulfur content in the soil.
Resumo:
ABSTRACT Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.
Resumo:
This paper describes a low-cost microprocessed instrument for in situ evaluating soil temperature profile ranging from -20.0°C to 99.9°C, and recording soil temperature data at eight depths from 2 to 128 cm. Of great importance in agriculture, soil temperature affects plant growth directly, and nutrient uptake as well as indirectly in soil water and gas flow, soil structure and nutrient availability. The developed instrument has potential applications in the soil science, when temperature monitoring is required. Results show that the instrument with its individual sensors guarantees ±0.25°C accuracy and 0.1°C resolution, making possible localized management changes within decision support systems. The instrument, based on complementary metal oxide semiconductor devices as well as thermocouples, operates in either automatic or non-automatic mode.
Resumo:
Tropical grasslands under lowland soils are generally underutilized and the litter of forage legumes may be used to recover these degraded pastures. The objective of this work was to study the dynamics of litter decomposition of Arachis pintoi (pinto peanut), Hyparrhenia rufa (thatching grass) and a mixture of both species in a lowland soil. These treatments were analyzed in three areas: grass monoculture, legume monoculture and legume intercropped with the grass during the dry and wet seasons. Litter bags containing the legume, grass or a mixture of both species were incubated to estimate the decomposition rate and microorganism colonization. Decomposition constants (K) and litter half-lives (T1/2) were estimated by an exponential model whereas number of microorganisms in specific media were determined by plate dilution. The decomposition rate, release of nutrients and microorganisms number, especially bacteria, increased when pinto peanut was added to thatching grass, influenced by favorable lignin/N and C/N ratios in legume litter. When pinto peanut litter was incubated in the grass plots, 50% N and P was released within about 135 days in the dry season and in the wet season, the equivalent release occurred within 20 days. These results indicate that A. pintoi has a great potential for nutrient recycling via litter and can be used to recover degraded areas.
Resumo:
The availability and the reserves of organic phosphorus are controlled by its mineralization rate and are also influenced by changes in soil management. The objective of this study was to evaluate the influence of soil covering with different leguminous plant on soil organic P by 31P-NMR spectroscopy. Alkaline soil extracts were obtained from two depths (0-5 and 5-10 cm) of an Ultisol cultivated with herbaceous perennial leguminous plants (Arachis pintoi, Pueraria phaseoloides, Macroptilium atropurpureum). In an adjacent area, samples of the same soil cover with a secondary tropical forest and grass (Panicum maximum) were also collected. The leguminous management was divided into with removal and without removal of shoot parts after cut on soil surface. Phosphate monoesters are the dominant P species in all soil samples and P diesters accumulated on the superficial layer of secondary forest soil. The P amount of this fraction is higher for the legume covered soil when compared with the grass covered soil. The permanence of leguminous plants on the topsoil after the cut promoted an increase in P diester/P monoester ratios. These findings can be accounted for an enhancement of P availability to plants in soils cultivated with leguminous plants.
Resumo:
Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA) and an eucalyptus arboretum (EAA). PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.
Resumo:
The objective of this work was to study possible mechanisms involved in root-induced changes of rhizosphere physicochemical properties of rice genotypes, under anoxia and low supply of Zn and Fe. Two rice genotypes, including an upland and a lowland ones, were grown in hydroponic medium under adequate and low supply of Zn and Fe, with or without aeration. Anoxia increased shoot dry weight, root length and uptake of Zn and Fe in lowland Amol genotype, but reduced these parameters in upland Gasrol-Dashti genotype. The amount of oxygen released by roots was statistically higher in 'Amol'. The highest acidification potential of roots was observed in the lowland genotype under low supply of Zn, and in the upland genotype under Fe starvation. The highest oxalate (only organic acid detected) exudation from roots was observed in Zn and Fe deficient Gasrol-Dashti genotype. Zinc deficiency caused reduction of alcohol dehydrogenase and stimulation of lactate dehydrogenase activity, particularly in shoot. The ability to induce changes in the rhizosphere properties has a great contribution for the adaptation of both lowland and upland rice genotypes to specific soil conditions.
Resumo:
The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.
Resumo:
The objectives of this work were to study the genetic control of grain yield (GY) and nitrogen (N) use efficiency (NUE, grain yield/N applied) and its primary components, N uptake efficiency (NUpE, N uptake/N applied) and N utilization efficiency (NUtE, grain yield/N uptake), in maize grown in environments with high and low N availability. Experiments with 31 maize genotypes (28 hybrid crosses and three controls) were carried out in soils with high and low N rates, in the southeast of the state of Minas Gerais, Brazil. There was a reduction of 23.2% in average GY for maize grown in soil with low N, in comparison to that obtained with high N. There were 26.5, 199 and 400% increases in NUtE, NUpE, and NUE, respectively, for maize grown with low N. The general combining ability (GCA) and specific combining ability (SCA) were significant for GY, NUE and NUpE for maize grown in high N soil. Only GCA was significant for NUpE for maize grown in low N soil. The GCA and SCA for NUtE were not significant in either environment. Additive and non-additive genetic effects are responsible for the genetic control of NUE and GY for maize grown in soils with high N availability, although additive effects are more important.
Resumo:
The reasons why we care about soil fauna are related to their intrinsic, utilitarian and functional values. The intrinsic values embrace aesthetic or moral reasons for conserving below-ground biodiversity. Unfortunately, the protection of soil invertebrates has rarely been a criterion for avoiding changes in land use and management. Utilitarian, or direct use values, have been investigated more extensively for fungi, bacteria and marine invertebrates than for soil fauna. However, some traditional remedies, novel enzymes and pharmaceutical compounds have been derived from earthworms, termites and other groups, and gut symbionts may provide microbial strains with interesting properties for biotechnology. The functional importance of soil invertebrates in ecosystem processes has been a major focus of research in recent decades. It is suggested herein that it is rarely possible to identify the role of soil invertebrates as rate determinants of soil processes at plot and ecosystem scales of hectares and above because other biophysical controls override their effects. There are situations, however, where the activities of functional groups of soil animals, even of species, are synchronised in space or time by plant events, resource inputs, seasonality or other perturbations to the system, and their emergent effects are detectable as higher order controls.
Resumo:
The objective of this work was to evaluate the aggregate stability of tropical soils under eucalyptus plantation and native vegetation, and assess the relationships between aggregate stability and some soil chemical and physical properties. Argisols, Cambisol, Latosols and Plinthosol within three eucalyptus-cultivated regions, in the states of Espírito Santo, Rio Grande do Sul and Minas Gerais, Brazil, were studied. For each region, soils under native vegetation were compared to those under minimum tillage with eucalyptus cultivation. The aggregate stability was measured using the high-energy moisture characteristic (HEMC) technique, i.e., the moisture release curve at very low suctions. This method compares the resistance of aggregates to slaking on a relative scale from zero to one. Thus, the aggregate stability from different soils and management practices can be directly compared. The aggregate stability ratio was greater than 50% for all soils, which shows that the aggregate stability index is high, both in eucalyptus and native vegetation areas. This suggests that soil management adopted for eucalyptus cultivation does not substantially modify this property. In these soils, the aggregate stability ratio does not show a good relationship with clay or soil organic matter contents. However, soil organic matter shows a positive relationship with clay content and cation exchange capacity.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
ABSTRACT Levels of Zn in tropical soils profoundly influences growth and nutrition of tree crops. Research was undertaken to assess the effect of soil Zn on growth and nutrition of clonal cacao tree seedlings of PH 16. Three acidic Oxisol soils differing in texture were used with nine doses of Zn (0, 1, 2, 4, 8, 16, 32, 48, and 64 mg dm-3). Rooted clonal seedlings were grown in plastic pot with 11 dm-3 of the soils at varying Zn levels for 240 days. At harvest growth (dry matter mass of leaves, stems, shoots, roots, and total) and nutrient concentrations were determined. The clonal cacao seedlings showed differences for production of dry matter mass and foliar nutrient concentrations for P, K, Ca, Mg, Mn, Fe, Zn, and Cu. There was Zn toxicity in all soils.