253 resultados para sunflower oils
Resumo:
Fats and oils are very important raw materials and functional ingredients for several food products such as confectionery, bakery, ice creams, emulsions, and sauces, shortenings, margarines, and other specially tailored products. Formulated products are made with just about every part of chemistry, but they are not simple chemicals. In general, they consist of several, and often many, components. Each of these components has a purpose. Most formulated products have a micro- or nano-structure that is important for their function, but obtaining this structure is often the big challenge. Due to a rise in overweight or obesity, health concerns have increased. This fact has led to the need to the develop products with low fat content, which have become a market trend. In addition, the development of new products using fat substitutes can be a good option for companies that are always trying to reduce costs or substitute trans fat or saturated fat. However, the successful development of these products is still a challenge because fat plays multiple roles in determining the desirable physicochemical and sensory attributes, and because the consumers who want or need to replace these ingredients, seek products with similar characteristics to those of the original product. Important attributes such as smooth, creamy and rich texture; milky and creamy appearance; desirable flavor; and satiating effects are influenced by the droplets of fat, and these characteristics are paramount to the consumer and consequently crucial to the success of the product in the market. Therefore, it is important to identify commercially viable strategies that are capable of removing or reducing fat content of food products without altering their sensory and nutritional characteristics. This paper intended to provide an overview about the role of fat in different food systems such as chocolate, ice cream, bakery products like biscuits, breads, and cakes considering the major trends of the food industry to meet the demands of modern society.
Resumo:
Given the increasing use of nanotechnology in food production and packaging, its acceptance was evaluated in Temuco, Chile, and different consumer segments were identified. Different brands of sunflower oil were used at different prices as a case study. A structured questionnaire was applied to 400 supermarket shoppers. It was determined that brand was more important than nanotechnology application in packaging and food, and more important than price. The consumers preferred an average priced oil with a manufacturer's brand with nanoparticles to reduce cholesterol, and packaging with nanoparticles to increase the shelf life of the product and to prevent the growth of microorganisms. Three consumer segments were distinguished by the cluster analysis. The largest segment (44%) preferred the oil without nanotechnology. The second (35.2%) preferred the oil with nanotechnology in the food and the packaging, and the greatest preference was for packaging with nanoparticles extension in the shelf life of the product. The third segment (20.8%) had similar behavior, but it showed greater preference for the oil with nanoparticles that reduced cholesterol and for the packaging that prevented the growth of bacteria and viruses. The segments differed in terms of their satisfaction with food-related life and lifestyle. It was found that over 50% of the participants preferred oil with nanotechnology applications.
Resumo:
The objective of this paper was to determine the chemical composition of the avocado fruit of cultivars Fortuna, Collinson, and Barker and to carry out a detailed analysis of the fatty acid composition of the pulp, seed, and peel oils. The saturated fatty acid (SFA) of the pulp oils accounted for around 22.3, 29.4, and 41.3% of the total fatty acids in the Fortuna, Collinson and Barker cultivars, respectively, and these values indicate better quality of pulp oil of Fortuna and Collinson cultivars than that of the Barker cultivar. There was very little variation in the content monounsaturated fatty acids of the peel oils between the cultivars. However, the seed oil of the Collinson cultivar was the best since it contained the lowest (30.8% of total fatty acids) content of SFA, but it had very high concentrations of 9,12-octadecadienoic (23.9 to 29.4% of total fatty acids) and 9,12,15-octadecatrienoic (9.9 to 18.3% of total fatty acids) acids.
Resumo:
The objective of this study was to characterize the chemical and functional properties of Mexican chia (Salvia hispanica) gums extracted from defatted whole and crushed nutlets using the Soxhlet and SFE-CO2 methods. Chia gums have interesting chemical and functional properties for the food industry. The oil and gum yields were in the range of 1.98-16.42% and 5.81-12.60%, respectively. The defatting procedure did not affect significantly the oil and gum extraction; the nutlet type (whole or crushed) was the only parameter influencing the yield. The proximate composition and the protein and fiber contents of chia gum were evaluated. Low contents of protein and fiber and high NFE levels were found in whole nutlet gums. The functional properties of chia gum extracted from whole and crushed nutlets with the Soxhlet and SFE-COs methods showed the following ranges of water absorption capacity of 62.64 to 143.66 g/g, water adsorption capacity of 0.69 to 1.35 g/g, and water and oil holding capacity of 100 to 149.28 g/g and19.5 to 40.4 g/g, respectively. The rheological behavior exhibited by the gums was pseudoplastic or shear thinning. From a functional perspective, chia gum is an important food component due its emulsifier and stabilizer potentials.
Resumo:
The fish industry generates high volume of waste from fish oil that can have the extraction of its lipids used as nutraceuticals and foods. The objective of this study was to produce unsaturated fatty acids from industrialized fish oil by means of a differentiated hydrolysis process. The samples used were crude fish oil obtained from Campestre industry and characterized through physical-chemical parameters, according to AOCS: acidity, peroxide, saponification, iodine and percentage of free fatty acids and also obtained the fatty acid profile through derivatization method for gas chromatography. The results obtained for the oleochemical indices for refined oil were similar to the data found on the literature. The content of polyunsaturated fatty acids (PUFA) was found of 32,78%, with 9,12% of docosahexaenoic (DHA) and 10,36% of eicosapentaenoic (EPA), regarding monounsaturated fatty acids (MUFA) content was of 30,59% in the hydrolyzed fish oil in relation to refined (20,06%). Thus, it can be concluded that the hydrolysis process used for oils from fish-waste was satisfactory on the production of absolute yield of lipids in the process and significant preservation on the percentages of EPA and DHA, interesting on the production of nutraceuticals and nutrition of aquatic animals, including shrimp in captivity.
Resumo:
In this study, it was aimed to determine the effect of sea bream (Sparus aurata) marinated some quality properties during cold storage. The fillets of fish were immersed into brine including 3.5% acetic acid 11% salt in the ratio of 1: 1.5 (fish: marinate brine) for marination process. After the process of ripening, samples were grouped into two and packed in plastic containers; one being plain (in sunflower oil) and the other being sauced (sauced prepared with sunflower oil). During storage, sensory, crude protein, lipid, dry matter and crude ash, TBA, TVB-N, TMA-N and peroxide analyses were done periodically. According to results of 200 days of storage, TVB-N values of sea bream marinates packaged as plain and sauced were 15.86/14.89 mg/100g, TBA 7.06/7.99 mg MA/kg, TMA-N 2.97/3.12, mg/100g, the value of peroxide was 7.23/7.45 meq/kg respectively. According to chemical and sensory analyses results obtained in the study; it was concluded that sea bream marinates packaged as plain and sauced can be stored in +4 °C for 200 days.
Resumo:
Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions). Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.
Resumo:
Abstract In this study, our aim was to consider the production of fish crackers using Carassius gibelio and to investigate the fatty acid profile and sensory quality of the fish crackers. Fish cracker mixture with a ratio 3.5:1.5 (minced fish/wheat starch) was obtained. Based on the total minced fish and starch level, 1.75% salt, 0.25% black pepper, 2% sunflower oil, 1% baking powder and 10% cold water (4 °C) were added and stirred until a homogenous mixture was obtained. The mixture was compressed in an extractor and baked. The moisture content of minced fish (CMF), cracker dough (CD) and crackers (CCr) was 77.73 ± 0.14%, 63.10 ± 2.18% and 7.95 ± 0.67% respectively. The n6/n3 ratio of crackers was 2.61 ± 0.20, PUFA/SFA ratio 2.28 ± 0.06 and DHA/EPA ratio 1.81 ± 0.01. The overall acceptability score obtained by the sensory evaluation of panelists was very high (8.09 ± 0.25).
Resumo:
Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils.
Resumo:
Abstract Fish consumption has increased in recent years. However, fish meat is highly perishable, which demonstrates the need for technologies to preserve its quality. Edible coatings (EC) might provide an alternative to extend the shelf life of fish. The goal of this study was to evaluate the effect of EC of chitosan (C) in combination with carvacrol (CAR) on the physical and microbiological changes of tilapia fillets. Fillets were submerged for two minutes in different treatments (T1: control; T2: C 2%; T3: C 2% + 0.125% CAR; T 4: C 2% + 0.25% CAR). At the end of storage, T1 and T2 showed the lowest values of total volatile bases (TVB). The color parameters L*, a* and b* varied from each treatment. The texture decreased and the different treatments reduced the microbial population in relation to the control; T3 and T4 were the most effective. These results show that the use of C with CAR might be an alternative method to preserve the quality and safety of tilapia fillets.
Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.)
Resumo:
Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS) and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching (coupled oxidation of β-carotene/linoleic acid) and Rancimat® assays. While α-linolenic acid (52%) was the most abundant fatty acid in linseed oil (LO), punicic acid (55%) was highest in pomegranate seed oil (PSO). Tocopherols and phytosterols (175 and 539 mg/100 g, respectively) were greater in PSO than in LO (51 and 328 mg/100 g, respectively). Both oils met quality standards. The β-carotene bleaching and the DPPH assays showed greater oxidative stability for PSO than for LO. The Rancimat® method, on the other hand, indicated low stability for both oils.
Resumo:
Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.
Resumo:
Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000) compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil). The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.