331 resultados para Tropical tree
Resumo:
Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.
Resumo:
A matéria orgânica do solo (MOS) é um dos grandes reservatórios de carbono (C) da Terra e constitui um dos principais componentes do ciclo do C. Turfeiras, ambientes acumuladores de MOS, são produto da decomposição de vegetais, que se desenvolvem e se acumulam em ambientes saturados com água, sendo o estádio inicial da sequência de carbonificação. A fitomassa participa de forma marcante no ciclo global do C, armazenando em torno de 85 % de todo o C terrestre acima do solo. O tecido vegetal é composto principalmente por lignina, celulose e hemicelulose, constituindo até 85 % da biomassa seca. As plantas discriminam C de forma diferenciada, em razão de seu ciclo fotossintético (C3, C4 e CAM). As turfeiras da Serra do Espinhaço Meridional (SdEM-MG) são colonizadas por vegetação de Campo Limpo Úmido (CLU) e de Floresta Estacional Semidecidual (FES), onde ocorrem espécies dos ciclos fotossintéticos C3 e C4. Este trabalho objetivou avaliar a contribuição dessas duas fitofisionomias para o acúmulo de MOS, por meio da avaliação da fitomassa e da composição lignocelulósica e isotópica da vegetação e da MOS. A turfeira estudada localiza-se na SdEM e ocupa 81,75 ha. Para a estimativa da fitomassa do CLU e da FES, foram marcadas três parcelas de 0,5 x 0,5 m em cada fitofisionomia, onde todos os indivíduos da parcela foram cortados e armazenados. Para as análises isotópicas e lignocelulósicas da vegetação, identificaram-se as espécies dominantes em cada fitofisionomia. Amostras de solo foram coletadas em três locais representativos sob cada fitofisionomia, a cada 5 cm de profundidade, até 50 cm. Foram extraídas a celulose e a lignina das folhas das 15 espécies dominantes e das 60 amostras de turfeira para quantificação e determinação dos valores de δ13C e δ15N. Para datação da MOS, o 14C foi determinado em três profundidades, sob o CLU e a FES. A produção da fitomassa da FES foi muito superior à produção da do CLU. Os sinais isotópicos e a composição lignocelulósica da vegetação e da matéria orgânica do solo evidenciaram que a turfeira foi formada pela deposição de matéria orgânica da vegetação que a coloniza. O crescimento vertical e a taxa de acúmulo de C foram muito mais elevados sob a FES do que sob o CLU.
Resumo:
Grande parte da matéria orgânica de Organossolos das turfeiras é composta por substâncias húmicas, formadas pela transformação de resíduos orgânicos pelos microrganismos do solo e pela polimerização dos compostos orgânicos em macromoléculas resistentes à degradação biológica. Os processos de humificação da matéria orgânica do solo (MOS) ainda são pouco compreendidos e o conhecimento sobre os precursores das substâncias húmicas é limitado, sendo apresentadas rotas diferentes para a formação dessas substâncias. Contudo, em todas as rotas, destaca-se a participação da lignina. Isótopos estáveis (13C, 15N) podem ser utilizados para rastrear processos de humificação da MOS, por meio da identificação de seus precursores. Este trabalho teve como objetivo avaliar comparativamente a composição isotópica da vegetação das fitofisionomias que colonizam uma turfeira tropical de altitude composta de Campo Limpo Úmido (CLU) e de Floresta Estacional Semidecidual (FES), em relação à composição isotópica das substâncias húmicas da MOS. A turfeira estudada ocupa 81,75 ha. Para as análises isotópicas e lignocelulósicas da vegetação, foram identificadas as espécies dominantes em cada fitofisionomia. Amostras de solo foram coletadas em três locais representativos sob cada fitofisionomia, a cada 5 cm de profundidade, até 50 cm. As substâncias húmicas dessas amostras foram fracionadas, assim como calculados os valores de δ13C e δ15N nas frações húmicas, respectivamente a partir da determinação dos isótopos estáveis 12C e 13C e 14N e 15N. Os teores de lignina e seus valores de δ13C são mais elevados na vegetação e MOS sob FES em relação à vegetação e MOS sob CLU. Os teores de humina são mais elevados entre as substâncias húmicas na MOS, sob as duas fitofisionomias; os de ácidos húmicos são mais elevados na MOS sob CLU, em relação à FES; e os de ácidos fúlvicos são mais elevados na MOS sob a FES, em relação ao CLU. O δ13C da lignina apresenta similaridade elevada em relação ao δ13C da humina, dos ácidos húmicos e dos ácidos fúlvicos. As variações na composição lignocelulósica das espécies que colonizam o CLU e a FES promovem diferenças nas taxas e nos produtos da humificação da MOS.
Resumo:
In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
The Soil Nitrogen Availability Predictor (SNAP) model predicts daily and annual rates of net N mineralization (NNM) based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate). The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer) for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March). Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84). In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.
Resumo:
ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).
Resumo:
ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.
Resumo:
ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM) as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC) and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM) contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case). Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.
Resumo:
Realizou-se um estudo de avaliação da Revista do Instituto de Medicina Tropical de São Paulo, por meio de procedimentos de técnicas bibliométricas que identificaram qualidades e consistência científicas do periódico. Verificou-se, mediante os resultados obtidos, que os conceitos de avaliação indicaram elevado desempenho do mesmo em relação aos seus aspectos intrínsecos e extrínsecos que permitiram conhecer: tipologia dos artigos publicados nas seções, temática enfocada para determinar o núcleo de assuntos de pesquisas realizadas e publicadas, procedência de autoria -- nacional e estrangeira, vínculo autor/instituição, distribuição --, mala direta, identificação das bases de dados nas quais o periódico é indexado e freqüência de citação. Esses resultados oferecem importantes dados que podem contribuir significativamente como parâmetro para o estudo de avaliação de outros periódicos científicos.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.