246 resultados para Reparo do DNA - Teses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA plasmids encoding foreign proteins may be used as immunogens by direct intramuscular injection alone, or with various adjuvants and excipients, or by delivery of DNA-coated gold particles to the epidermis through biolistic immunization. Antibody, helper T lymphocyte, and cytotoxic T lymphocyte (CTL) responses have been induced in laboratory and domesticated animals by these methods. In a number of animal models, immune responses induced by DNA vaccination have been shown to be protective against challenge with various infectious agents. Immunization by injection of plasmids encoding foreign proteins has been used successfully as a research tool. This review summarizes the types of DNA vaccine vectors in common use, the immune responses and protective responses that have been obtained in animal models, the safety considerations pertinent to the evaluation of DNA vaccines in humans and the very limited information that is available from early clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulation of the mammalian immune system by administration of plasmid DNA has been shown to be an important approach for vaccine development against several pathogens. In the present study we investigated the use of DNA vaccines to induce immune responses against an enteric bacterial pathogen, enterotoxigenic Escherichia coli (ETEC). Three plasmid vectors encoding colonization factor antigen I (CFA/I), an ETEC fimbrial adhesin, were constructed. Eukaryotic cells transfected with each of these plasmids expressed the heterologous antigen in different compartments: bound to the cytoplasmic membrane (pRECFA), accumulated in the cytoplasm (pPolyCFA) or secreted to the outside medium (pBLCFA). BALB/c mice were intramuscularly (im) inoculated with purified plasmid DNA and the systemic, cellular and secreted CFA/I-specific immune responses were analyzed. The results showed that all three DNA vaccine formulations could elicit CFA/I-specific immune responses. Moreover, cellular location of the plasmid-encoded CFA/I seems to have an important role in the induced immune response. Taken together, these results indicate that DNA vaccines also represent a promising approach against enteric bacterial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few years, some of our experiments in which mycobacterial antigens were presented to the immune system as if they were viral antigens have had a significant impact on our understanding of protective immunity against tuberculosis. They have also markedly enhanced the prospects for new vaccines. We now know that individual mycobacterial protein antigens can confer protection equal to that from live BCG vaccine in mice. A critical determinant of the outcome of immunization appears to be the degree to which antigen-specific cytotoxic T cells are generated by the immune response. Our most recent studies indicate that DNA vaccination is an effective way to establish long-lasting cytotoxic T cell memory and protection against tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, does not synthesize sialic acid, but expresses a trans-sialidase (TS) that catalyzes the transfer of sialic acid from host glycoconjugates to the parasite surface. Here, we review studies that characterize the immune response to the catalytic domain of the enzyme in humans during Chagas' disease or in mice following immunization with the TS gene. In both cases, there are antibodies that strongly inhibit the enzymatic activity and generation of interferon-<FONT FACE="Symbol">g</FONT>-producing T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of systemic (IgG) and mucosal (IgA) antibody responses against the colonization factor I antigen (CFA/I) of enterotoxigenic Escherichia coli (ETEC) was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.