350 resultados para Leaf content
Resumo:
ABSTRACT The essay objective was to correlate lignin content resulting from tigmomorphogenesis induced by stem swaying with survival and post-planting growth of P. taeda seedlings. Seedlings were subjected to daily frequencies (0, 5, 10, 20 and 40 movements) of stem swaying for 60 days. By the end of the treatments, we determined lignin content of below and aboveground seedling tissues. Four replicates per treatment were planted in a area cultivated with pines. Ninety days after planting, survival and increments of seedling height, stem diameter and stem volume were quantified. Application of 20 stem swayings increased lignin in both below and aboveground plant tissues. Outplanted seedling survival was reduced with 40 stem swayings while growth increments were increased with both 10 and 20 stem swayings. Lignin content from belowground plant tissues was positively correlated with outplanted seedling survival while lignin from aboveground tissues correlated with height and stem volume increments. P. taeda seedlings with higher lignin content have higher survival chances after planting.
Resumo:
ABSTRACT Considering the importance of the riparian vegetation leaves as an energetic source to first order streams, the aim of the present study was to evaluate the leaf biomass contribution to the system and its temporal dynamics. With this purpose, monthly samples from July 2008 to June 2009 were collected using four sampling devices installed in three streams, in order to collect the vertical, lateral and terrestrial loads, and the benthic stock. We tested the following hypothesis: (1) leaf biomass input is higher after hydric stress periods; and (2) benthic stock biomass increase with higher loads from vertical and lateral entrances. Leaves represented 71.9% (on average) of all sampled allochthonous matter, with seasonal significant variation along the studied year. Peaks of leaf input were registered in September-October, after an increase in rainfall, and also in January, after a decrease in rainfall. Leaf input was higher in the lateral load.
Resumo:
ABSTRACT This work aimed to evaluate the consequences of the monthly extraction of immature leaves in survival, leaf production and reproductive performance ofCopernicia prunifera H. E. Moore palm, popularly known as carnaúba. One hundred sixty reproductive adult palms were monitored for 17 months in four extractive communities located at the coast of the state of Piauí. As a result, it was observed that leaves, flowers, fruits and seeds production were reduced in the palm submitted to 50% or 75% monthly extraction. Higher levels of extraction were followed by smaller levels in seed germination. No deaths were observed even in the group subjected to 75% monthly leaves exploration. In order not to produce damage to palm trees development it is suggested that leaf extraction rate should not exceed 25% monthly as well as pausing of extractive activity preferentially during fruit maturation.
Resumo:
Despite considerable efforts to develop accurate electronic sensors to measure leaf wetness duration (LWD), little attention has been given to studies about how is LWD variability in different positions of the crop canopy. In order to evaluate the influence of 'Niagara Rosada' (Vitis labrusca) grapevine structure on the spatial variability of LWD, the objective of this study was to determine the canopy position of the ÂNiagara Rosada table grape with longer LWD and its correlation with measured standard LWD over turfgrass. LWD was measured in four different canopy positions of the vineyard (sensors deployed at 45º with the horizontal): at the top of the plants, with sensors facing southwest and northeast (Top-SW and Top-NE), and at the grape bunches height, with sensors facing southwest and northeast (Bottom-SW and Bottom-NE). No significant difference was observed between the top (1.6 m) and the bottom (1.0 m) of the canopy and also between the southwest and northeast face of the plants. The relationship between standard LWD over turfgrass and crop LWD in different positions of the grape canopy showed a define correlation, with R² ranging from 0.86 to 0.89 for all period, from 0.72 to 0.77 for days without rain, and from 0.89 to 0.91 for days with rain.
Resumo:
The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type Quartzarenic Neosoil. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.
Resumo:
The objective of this study was to simulate the impact of elevated temperature scenarios on leaf development of potato in Santa Maria, RS, Brazil. Leaf appearance was estimated using a multiplicative model that has a non-linear temperature response function which calculates the daily leaf appearance rate (LAR, leaves day-1) and the accumulated number of leaves (LN) from crop emergence to the appearance of the upper last leaf. Leaf appearance was estimated during 100 years in the following scenarios: current climate, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. The LAR model was estimated with coefficients of the Asterix cultivar in five emergence dates and in two growing seasons (Fall and Spring). Variable of interest was the duration (days) of the crop emergence to the appearance of the final leaf number (EM-FLN) phase. Statistical analysis was performed assuming a three-factorial experiment, with main effects being climate scenarios, growing seasons, and emergence dates in a completely randomized design using years (one hundred) as replications. The results showed that warmer scenarios lead to an increase, in the fall, and a decrease, in the spring growing season, in the duration of the leaf appearance phase, indicating high vulnerability and complexity of the response of potato crop grown in a Subtropical environment to climate change.
Resumo:
The objective of this study was to evaluate the performance of two genotypes of elephant grass, fertilized with and without N, for biomass production for energy use under the edaphoclimatic conditions of the Cerrado. The genotypes Roxo and Paraíso, grown in a field experiment in a Latosol in the Cerrado region were evaluated for biomass yield, nitrogen accumulation, C:N and stem:leaf ratios, fibre, ash and P and K contents and calorific value. The accumulated dry biomass ranged from 30 to 42 Mg ha-1 and showed no response to nitrogen fertilization with the lowest biomass obtained by the genotype Paraíso and the highest by Roxo. The total N accumulation followed the same pattern as for dry matter, ranging from 347 to 539 kg N ha-1. C:N and stem:leaf ratio of the biomass produced did not vary with treatments. The fibre contents were higher in genotype Paraíso and the highest levels of ash in the genotype Roxo. The K content in the biomass was higher in genotype Roxo and P did not vary between genotypes. The calorific value averaged 18 MJ kg-1 of dry matter and did not vary with the levels of N in leaves and stems of the plant. Both genotypes, independent of N fertilization, produced over 30 Mg ha-1 of biomass under Cerrado conditions.
Resumo:
The aim of this research was to evaluate the effects of different irrigation depths and potassium dosages, of Jatropha seed oil content and yield. The experimental design used was randomized blocks, in split-plots, with four replicates. The treatments were four water depths (plots) and four potassium dosages (subplots) applied through irrigation water. The water depths were applied based on the percentage of accumulated evaporation of a Class A (ECA) tank and of rainfall, as following: L0 = without irrigation, L40, L80 and L120, representing 40, 80 and 120% of the balance, respectively. The potassium dosages were K30, K60, K90 and K120 (30, 60, 90 and 120kg ha-1 of potassium, respectively). The oil extraction of samples was done through chemical extraction by organic solvent. The seeds used in this test were from the sampling of two seed productions from 2009, second year of crop production. It was possible to observe that irrigation use increased oil yield and decreased the oil content of Jatropha seed. Potassium fertilization did not influence oil content and yield. There was a relative increase of efficiency in water use producing oil until certain water depth, and after that there was a decrease.
Resumo:
Soil compaction caused by machinery traffic reduces crop yields. This study aimed to evaluate the effects of intensive traffic, and the soil water content, on the soil penetration resistance (PR) of a Rhodic Eutrudox (Distroferric Red Latosol, Brazilian Classification), managed under no-tillage (NT). The experiment consisted of six treatments: NT with recent chiseling, NT without additional compaction, and NT with additional compaction by 4, 8, 10 and 20 passes of a harvester with a weight of 100 kN (70 kN on the front axle). Undisturbed soil samples were collected at 5.5-10.5 cm and 13.5-18.5 cm depth to quantify the soil bulk density (BD). The PR was assessed in four periods, using an impact penetrometer, inserted in the soil to a depth of 46 cm. The effect of traffic intensities on the PR was small when this variable was assessed with the soil in the plastic consistency. Differences in PR among treatments increased as the soil water content decreased. The increase in the values of PR and BD was higher in the first passes, but the increase in the number of traffics resulted in deeper soil compaction. The machinery traffic effects on PR are better characterized in the friable soil consistency.
Resumo:
The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
Resumo:
Straw on sowing line modifies seed germination environment regarding temperature and water content. Given these considerations, the aim of this study was to evaluate different mechanisms for coverage mobilization on the sowing line and their effect on germination environment of maize seeds, mainly in relation to the dynamics of straw in the seedbed, water content and soil temperature. Treatments consisted on the combination of two mechanisms at front of furrow opener, composed of cutting disc and row cleaners, with three mechanisms behind the seed furrower for returning the soil, consisting of three covering mechanisms, commercial and prototype models. It was found that straw presence on the surface of sowing line contributed to germination of maize seeds, maintenance of temperature and soil water content. The cutting disc treatment, associated with prototype, introduced percentages of water content near the ones in bottom layer, and this soil water content was 29.7% with 93.75% of straw coverage and deeper seeding depth, granting better conditions for seed germination. However, the straw coverage removal on soil by the row cleaners and its low sowing depth caused water loss in the lines resulting in great reduction of the emergence speed index in maize seedlings.
Resumo:
Irrigation plays an important role for grape’s yield as well as on its quality for winemaking. Thus, the effects of deficit irrigation strategies on yield and quality of wine grapes cv. Syrah were evaluated in Petrolina, State of Pernambuco, Brazil. Evaluations were carried out throughout the second and third growing seasons, which were from November 2010 to February 2011 (rainy season) and from May to September 2011 (dry season), respectively. Vines were drip irrigated and the experimental design was completely randomized with three treatments and four replications. The treatments were full irrigation (FI), performed according crop evapotranspiration; regulated deficit irrigation (RDI), in which irrigation was interrupted in phenological growth stage of bunch closure, but was occasionally performed according soil water monitoring of the root zone; and deficit irrigation (DI), when irrigation was interrupted from bunch closure to harvesting. Differences on leaf water content among treatments were observed in both growing seasons and RDI and DI treatment plants presented moderate water stress. The number of bunches did not differ among treatments in both growing seasons; however, bunch weight per plant, average bunch weight and soluble solid content were higher in FI treatment during the dry season. Deficit irrigation strategies promoted water saving.
Resumo:
ABSTRACT This study aimed to identify wavelengths based on leaf reflectance (400-1050 nm) to estimate white mold severity in common beans at different seasons. Two experiments were carried out, one during fall and another in winter. Partial Least Squares (PLS) regression was used to establish a set of wavelengths that better estimates the disease severity at a specific date. Therefore, observations were previously divided in two sub-groups. The first one (calibration) was used for model building and the second subgroup for model testing. Error measurements and correlation between measured and predicted values of disease severity index were employed to provide the best wavelengths in both seasons. The average indexes of each experiment were of 5.8% and 7.4%, which is considered low. Spectral bands ranged between blue and green, green and red, and red and infrared, being most sensitive for disease estimation. Beyond the transition ranges, other spectral regions also presented wavelengths with potential to determine the disease severity, such as red, green, and near infrared.