242 resultados para Katerji method
Resumo:
R,S-sotalol, a ß-blocker drug with class III antiarrhythmic properties, is prescribed to patients with ventricular, atrial and supraventricular arrhythmias. A simple and sensitive method based on HPLC-fluorescence is described for the quantification of R,S-sotalol racemate in 500 µl of plasma. R,S-sotalol and its internal standard (atenolol) were eluted after 5.9 and 8.5 min, respectively, from a 4-micron C18 reverse-phase column using a mobile phase consisting of 80 mM KH2PO4, pH 4.6, and acetonitrile (95:5, v/v) at a flow rate of 0.5 ml/min with detection at lex = 235 nm and lem = 310 nm, respectively. This method, validated on the basis of R,S-sotalol measurements in spiked blank plasma, presented 20 ng/ml sensitivity, 20-10,000 ng/ml linearity, and 2.9 and 4.8% intra- and interassay precision, respectively. Plasma sotalol concentrations were determined by applying this method to investigate five high-risk patients with atrial fibrillation admitted to the Emergency Service of the Medical School Hospital, who received sotalol, 160 mg po, as loading dose. Blood samples were collected from a peripheral vein at zero, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0 h after drug administration. A two-compartment open model was applied. Data obtained, expressed as mean, were: CMAX = 1230 ng/ml, TMAX = 1.8 h, AUCT = 10645 ng h-1 ml-1, Kab = 1.23 h-1, a = 0.95 h-1, ß = 0.09 h-1, t(1/2)ß = 7.8 h, ClT/F = 3.94 ml min-1 kg-1, and Vd/F = 2.53 l/kg. A good systemic availability and a fast absorption were obtained. Drug distribution was reduced to the same extent in terms of total body clearance when patients and healthy volunteers were compared, and consequently elimination half-life remained unchanged. Thus, the method described in the present study is useful for therapeutic drug monitoring purposes, pharmacokinetic investigation and pharmacokinetic-pharmacodynamic sotalol studies in patients with tachyarrhythmias.
Resumo:
Microbial pathogens such as bacillus Calmette-Guérin (BCG) induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II). Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5) cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5) macrophages per well, we determined sequentially the oxidative burst (H2O2), nitric oxide production and MHC II (IAk) expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.