246 resultados para Enteric viruses
Resumo:
The objective of this work was to select surviving breeders of Litopenaeus vannamei from white spot syndrome virus (WSSV) outbreak, adapted to local climatic conditions and negatively diagnosed for WSSV and infectious hypodermal and hematopoietic necrosis virus (IHHNV), and to evaluate if this strategy is a viable alternative for production in Santa Catarina, Brazil. A total of 800 males and 800 females were phenotypically selected in a farm pond. Nested-PCR analyses of 487 sexually mature females and 231 sexually mature males showed that 63% of the females and 55% of the males were infected with IHHNV. Animals free of IHHNV were tested for WSSV, and those considered double negative were used for breeding. The post-larvae produced were stocked in nine nursery tanks for analysis. From the 45 samples, with 50 post-larvae each, only two were positive for IHHNV and none for WSSV. Batches of larvae diagnosed free of virus by nested-PCR were sent to six farms. A comparative analysis was carried out in growth ponds, between local post-larvae and post-larvae from Northeast Brazil. Crabs (Chasmagnathus granulata), blue crabs (Callinectes sapidus), and sea hares (Aplysia brasiliana), which are possible vectors of these viruses, were also evaluated. The mean survival was 55% for local post-larvae against 23.4% for post-larvae from the Northeast. Sea hares showed prevalence of 50% and crabs of 67% of WSSV.
Resumo:
The objective of this work was to produce a polyclonal antiserum against the coat protein (CP) of Papaya lethal yellowing virus (PLYV) and to determine its specificity and sensibility in the diagnosis of the virus, as well as to evaluate the genetic resistance to PLYV in papaya (Carica papaya) accessions and to investigate the capacity of the two-spotted spider mite Tetranychus urticae to acquire and transmit PLYV to the plants. Sixty-five papaya accessions were evaluated. For each accession, ten plants were mechanically inoculated using PLYV-infected plant extracts, and three plants were mock inoculated with phosphate buffer alone and used as negative controls. Ninety days after inoculation, newly-emerging systemic leaves were collected from the inoculated plants, and viral infection was diagnosed by indirect Elisa, using polyclonal antiserum sensible to the in vitro-expressed PLYV CP. Viral transmission by T. urticae was evaluated in greenhouse. The experiments were repeated twice. Polyclonal antiserum recognized the recombinant PLYV CP specifically and discriminated PLYV infection from infections caused by other plant viruses. Out of the 65 papaya accessions evaluated, 15 were considered resistant, 18 moderately resistant, and 32 susceptible. The two-spotted spider mite T. urticae was capable of acquiring PLYV, but not of transmitting it to papaya.
Resumo:
The present study aimed to review high resolution computed tomography findings in patients with H1N1 influenza A infection. The most common tomographic findings include ground-glass opacities, areas of consolidation or a combination of both patterns. Some patients may also present bronchial wall thickening, airspace nodules, crazy-paving pattern, perilobular opacity, air trapping and findings related to organizing pneumonia. These abnormalities are frequently bilateral, with subpleural distribution. Despite their nonspecificity, it is important to recognize the main tomographic findings in patients affected by H1N1 virus in order to include this possibility in the differential diagnosis, characterize complications and contribute in the follow-up, particularly in cases of severe disease.
Resumo:
Photodynamic Therapy (PDT) has been designated as a promising new modality in the treatment of cancer and other diseases since the early 1980s. It has been used with success for the treatment of a variety of tumours, and attempts are being made to extend this treatment modality to other clinical conditions (as example, the inactivation of viruses in blood and blood components). This can be partly attributed to the very attractive basic concept of PDT: the combination of a photosensitizing drug and light, which are relatively harmless by themselves but combined (in the presence of oxygen) ultimately cause more or less selective tumour destruction.
Resumo:
Glucosidases are involved in key steps in the processing of oligosaccharides by cleaving O-glucose residues. Since they catalyze breaking and transfer reactions of glucosidic groups for the normal growth and development of all the cells, defects or genetic deficiencies in these enzymes are associated with serious disorders of the carbohydrate metabolism. Thus, glucosidases represent important targets to develop inhibitors, owing to their potential activities against viruses, tumoral growth and metastasis, diabetes, Gaucher's disease and other syndromes associated with the lisosomal storage of glucoesphingolipids, and osteoarthritis. This paper presents a description of the biochemical pathways and mechanisms of alpha and beta-glucosidases, and the currently available drugs capable to inhibit these enzymes.
Resumo:
Photodynamic Therapy uses photosensitive dyes and visible light that, combined in the presence of oxygen, produce cytotoxic species that cause tumor death. Microorganisms such as bacteria, fungi, yeasts and viruses (including HIV) can also be inactivated by visible light after treatment with an appropriate photosensitizer as an alternative low cost treatment for localized infections, viral lesions such as acnes, and fungical skin lesions for example. Besides, Photodynamic Inactivation can be used for sterilization of blood and its subproducts for clinical use, in the treatment of drinking water as well as in antimicrobial detoxification of foods.