256 resultados para pulmonary dysfunction
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg) and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg). The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13) consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio) also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction). The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg), but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg). Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg), as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL) and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction) dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution induced by hypocapnic bronchoconstriction.
Resumo:
Experimental models of sepsis-induced pulmonary alterations are important for the study of pathogenesis and for potential intervention therapies. The objective of the present study was to characterize lung dysfunction (low PaO2 and high PaCO2, and increased cellular infiltration, protein extravasation, and malondialdehyde (MDA) production assessed in bronchoalveolar lavage) in a sepsis model consisting of intraperitoneal (ip) injection of Escherichia coli and the protective effects of pentoxifylline (PTX). Male Wistar rats (weighing between 270 and 350 g) were injected ip with 10(7) or 10(9) CFU/100 g body weight or saline and samples were collected 2, 6, 12, and 24 h later (N = 5 each group). PaO2, PaCO2 and pH were measured in blood, and cellular influx, protein extravasation and MDA concentration were measured in bronchoalveolar lavage. In a second set of experiments either PTX or saline was administered 1 h prior to E. coli ip injection (N = 5 each group) and the animals were observed for 6 h. Injection of 10(7) or 10(9) CFU/100 g body weight of E. coli induced acidosis, hypoxemia, and hypercapnia. An increased (P < 0.05) cell influx was observed in bronchoalveolar lavage, with a predominance of neutrophils. Total protein and MDA concentrations were also higher (P < 0.05) in the septic groups compared to control. A higher tumor necrosis factor-alpha (P < 0.05) concentration was also found in these animals. Changes in all parameters were more pronounced with the higher bacterial inoculum. PTX administered prior to sepsis reduced (P < 0.05) most functional alterations. These data show that an E. coli ip inoculum is a good model for the induction of lung dysfunction in sepsis, and suitable for studies of therapeutic interventions.
Resumo:
We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10) and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10). All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values) and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values), which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups). There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.
Resumo:
Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.
Resumo:
Chronic obstructive pulmonary disease (COPD) is a common disease in adults over 40 years of age and has a great social and economic impact. It remains little recognized and undertreated even in developed countries. However, there are no data about its diagnosis and treatment in Brazil. The objectives of the present study were to evaluate the proportion of COPD patients who had never been diagnosed and to determine if the COPD patients who had been identified were receiving appropriate treatment. The Latin American Project for the Investigation of Obstructive Lung Disease (PLATINO) was a randomized epidemiological study of adults over 40 years living in five metropolitan areas, including São Paulo. The studied sample was randomly selected from the population after a division of the metropolitan area of São Paulo in clusters according to social characteristics. All subjects answered a standardized questionnaire on respiratory symptoms, history of smoking, previous diagnosis of lung disease, and treatments. All subjects performed spirometry. The criterion for the diagnosis of COPD was defined by a post-bronchodilator FEV1/FVC ratio lower than 0.7. A total of 918 subjects were evaluated and 144 (15.8%) met the diagnostic criterion for COPD. However, 126 individuals (87.5%) had never been diagnosed. This undiagnosed group of COPD patients had a lower proportion of subjects with respiratory symptoms than the previously diagnosed patients (88.9 vs 54.8%) and showed better lung function with greater FEV1 (86.8 ± 20.8 vs 68.5 ± 23.6% predicted) and FVC (106.6 ± 22.4 vs 92.0 ± 24.1% predicted). Among the COPD patients, only 57.3% were advised to stop smoking and 30.6% received the influenza vaccine. In addition, 82.3% did not receive any pharmacological treatment. In conclusion, COPD is underdiagnosed and a large number of COPD patients are not treated appropriately.
Resumo:
The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5)-triphosphate (IP3) in colon dysmotility induced by multiple organ dysfunction syndrome (MODS) caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC) in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11) vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05). After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05). Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.
Resumo:
We assessed the neuropsychological test performances of 26 patients (mean age = 41.5 ± 6.1 years; mean years of education = 9.8 ± 1.8; 20 males) diagnosed with chronic occupational mercurialism who were former workers at a fluorescent lamp factory. They had been exposed to elemental mercury for an average of 10.2 ± 3.8 years and had been away from this work for 6 ± 4.7 years. Mean urinary mercury concentrations 1 year after cessation of work were 1.8 ± 0.9 µg/g creatinine. Twenty control subjects matched for age, gender, and education (18 males) were used for comparison. Neuropsychological assessment included attention, inhibitory control, verbal and visual memory, verbal fluency, manual dexterity, visual-spatial function, executive function, and semantic knowledge tests. The Beck Depression Inventory and the State and Trait Inventory were used to assess depression and anxiety symptoms, respectively. The raw score for the group exposed to mercury indicated slower information processing speed, inferior performance in psychomotor speed, verbal spontaneous recall memory, and manual dexterity of the dominant hand and non-dominant hand (P < 0.05). In addition, the patients showed increased depression and anxiety symptoms (P < 0.001). A statistically significant correlation (Pearson) was demonstrable between mean urinary mercury and anxiety trait (r = 0.75, P = 0.03). The neuropsychological performances of the former workers suggest that occupational exposure to elemental mercury has long-term effects on information processing and psychomotor function, with increased depression and anxiety also possibly reflecting the psychosocial context.
Resumo:
Little is known about airway inflammatory markers in chronic obstructive pulmonary disease (COPD). The objective of the present study was to identify and try to correlate pulmonary and peripheral blood inflammatory markers in COPD. In a cross-sectional study on patients with stable COPD, induced sputum and blood samples were collected for the determination of C-reactive protein, eosinophilic cationic protein, serum amyloid A protein, a-1 antitrypsin (a-1AT), and neutrophil elastase. Twenty-two patients were divided into two groups according to post-bronchodilator forced expiratory volume in the first second (%FEV1): group 1 (N = 12, FEV1 <40%) and group 2 (N = 10, FEV1 ³40%). An increase in serum elastase, eosinophilic cationic protein and a-1AT was observed in serum markers in both groups. Cytology revealed the same total number of cells in groups 1 and 2. There was a significantly higher number of neutrophils in group 1 compared to group 2 (P < 0.05). No difference in eosinophils or macrophages was observed between groups. Serum elastase was positively correlated with serum a-1AT (group 1, r = 0.81, P < 0.002 and group 2, r = 0.83, P < 0.17) and negatively correlated with FEV1 (r = -0.85, P < 0.03 and -0.14, P < 0.85, respectively). The results indicate the presence of chronic and persistent pulmonary inflammation in stable patients with COPD. Induced sputum permitted the demonstration of the existence of a subpopulation of cells in which neutrophils predominated. The serum concentration of all inflammatory markers did not correlate with the pulmonary functional impairment.
Resumo:
We evaluated the recovery of cardiovascular function after transient cardiogenic shock. Cardiac tamponade was performed for 1 h and post-shock data were collected in 5 domestic large white female pigs (43 ± 5 kg) for 6 h. The control group (N = 5) was observed for 6 h after 1 h of resting. During 1 h of cardiac tamponade, experimental animals evolved a low perfusion status with a higher lactate level (8.0 ± 2.2 vs 1.9 ± 0.9 mEq/L), lower standard base excess (-7.3 ± 3.3 vs 2.0 ± 0.9 mEq/L), lower urinary output (0.9 ± 0.9 vs 3.0 ± 1.4 mL·kg-1·h-1), lower mixed venous saturation, higher ileum partial pressure of CO2-end tidal CO2 (EtCO2) gap and a lower cardiac index than the control group. Throughout the 6-h recovery phase after cardiac tamponade, tamponade animals developed significant tachycardia with preserved cardiac index, resulting in a lower left ventricular stroke work, suggesting possible myocardial dysfunction. Vascular dysfunction was present with persistent systemic hypotension as well as persistent pulmonary hypertension. In contrast, oliguria, hyperlactatemia and metabolic acidosis were corrected by the 6th hour. The inflammatory characteristics were an elevated core temperature and increased plasma levels of interleukin-6 in the tamponade group compared to the control group. We conclude that cardiovascular recovery after a transient and severe low flow systemic state was incomplete. Vascular dysfunction persisted up to 6 h after release of tamponade. These inflammatory characteristics may also indicate that inflammatory activation is a possible pathway involved in the pathogenesis of cardiogenic shock.
Resumo:
The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.
Resumo:
The objective of the present study was to identify metabolic, cardiovascular and autonomic changes induced by fructose overload administered in the drinking water of rats for 8 weeks. Female Wistar rats (200-220 g) were divided into 2 groups: control (N = 8) and fructose-fed rats (N = 5; 100 mg/L fructose in drinking water for 8 weeks). The autonomic control of heart rate was evaluated by pharmacological blockade using atropine (3 mg/kg) and propranolol (4 mg/kg). The animals were submitted to an intravenous insulin tolerance test (ITT) and to blood glucose measurement. The fructose overload induced a significant increase in body weight (~10%) and in fasting glycemia (~28%). The rate constant of glucose disappearance (KITT) during ITT was lower in fructose-fed rats (3.25 ± 0.7%/min) compared with controls (4.95 ± 0.3%/min, P < 0.05) indicating insulin resistance. The fructose-fed group presented increased arterial pressure compared to controls (122 ± 3 vs 108 ± 1 mmHg, P < 0.05) and a reduction in vagal tonus (31 ± 9 vs 55 ± 5 bpm in controls, P < 0.05). No changes in sympathetic tonus were observed. A positive correlation, tested by the Pearson correlation, was demonstrable between cardiac vagal tonus and KITT (r = 0.8, P = 0.02). These data provided new information regarding the role of parasympathetic dysfunction associated with insulin resistance in the development of early metabolic and cardiovascular alterations induced by a high fructose diet.
Resumo:
Few studies have evaluated the relationship between Airways Questionnaire 20 (AQ20), a measure of the quality of life, scores and physiological outcomes or with systemic markers of disease in patients with chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the relationship of forced expiratory volume in 1 s (FEV1), body mass index, fat-free mass index, 6-min walk test (6MWT) results, dyspnea sensation and peripheral oxygen saturation (SpO2) with the quality of life of COPD patients. Ninety-nine patients with COPD (mean age: 64.2 ± 9.2 years; mean FEV1: 60.4 ± 25.2% of predicted) were evaluated using spirometry, body composition measurement and the 6MWT. The baseline dyspnea index (BDI) and the Modified Medical Research Council (MMRC) scale were used to quantify dyspnea. Quality of life was assessed using the AQ20 and the St. George's Respiratory Questionnaire (SGRQ). The Charlson index was used to determine comorbidity. The body mass index/airflow obstruction/dyspnea/exercise capacity (BODE) index was also calculated. AQ20 and SGRQ scores correlated significantly with FEV1, SpO2, 6MWT, MMRC and BDI values as did with BODE index. In the multivariate analyses, MMRC or BDI were identified as predictors of AQ20 and SGRQ scores (P < 0.001 in all cases). Thus, the relationship between AQ20 and disease severity is similar to that described for SGRQ. Therefore, the AQ20, a simple and brief instrument, can be very useful to evaluate the general impact of disease when the time allotted for measurement of the quality of life is limited.
Resumo:
Disturbed sleep is common in chronic obstructive pulmonary disease (COPD). Conventional hypnotics worsen nocturnal hypoxemia and, in severe cases, can lead to respiratory failure. Exogenous melatonin has somnogenic properties in normal subjects and can improve sleep in several clinical conditions. This randomized, double-blind, placebo-controlled study was carried out to determine the effects of melatonin on sleep in COPD. Thirty consecutive patients with moderate to very severe COPD were initially recruited for the study. None of the participants had a history of disease exacerbation 4 weeks prior to the study, obstructive sleep apnea, mental disorders, current use of oral steroids, methylxanthines or hypnotic-sedative medication, nocturnal oxygen therapy, and shift work. Patients received 3 mg melatonin (N = 12) or placebo (N = 13), orally in a single dose, 1 h before bedtime for 21 consecutive days. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI) and daytime sleepiness was measured by the Epworth Sleepiness Scale. Pulmonary function and functional exercise level were assessed by spirometry and the 6-min walk test, respectively. Twenty-five patients completed the study protocol and were included in the final analysis. Melatonin treatment significantly improved global PSQI scores (P = 0.012), particularly sleep latency (P = 0.008) and sleep duration (P = 0.046). No differences in daytime sleepiness, lung function and functional exercise level were observed. We conclude that melatonin can improve sleep in COPD. Further long-term studies involving larger number of patients are needed before melatonin can be safely recommended for the management of sleep disturbances in these patients.
Resumo:
Subjects with chronic obstructive pulmonary disease (COPD) present breathing pattern and thoracoabdominal motion abnormalities that may contribute to exercise limitation. Twenty-two men with stable COPD (FEV1 = 42.6 ± 13.5% predicted; age 68 ± 8 years; mean ± SD) on usual medication and with at least 5 years of diagnosis were evaluated at rest and during an incremental cycle exercise test (10 watts/2 min). Changes in respiratory frequency, tidal volume, rib cage and abdominal motion contribution to tidal volume and the phase angle that measures the asynchrony were analyzed by inductive respiratory plethysmography at rest and during three levels of exercise (30-50, 70-80, and 100% maximal work load). Repeated measures ANOVA followed by pre-planned contrasts and Bonferroni corrections were used for analyses. As expected, the greater the exercise intensity the higher the tidal volume and respiratory frequency. Abdominal motion contributed to the tidal volume increase (rest: 49.82 ± 11.19% vs exercise: 64.15 ± 9.7%, 63.41 ± 10%, and 65.56 ± 10.2%, respectively, P < 0.001) as well as the asynchrony [phase angle: 11.95 ± 7.24° at rest vs 22.2 ± 15° (P = 0.002), 22.6 ± 9° (P < 0.001), and 22.7 ± 8° (P < 0.001), respectively, at the three levels of exercise]. In conclusion, the increase in ventilation during exercise in COPD patients was associated with the major motion of the abdominal compartment and with an increase in the asynchrony independent of exercise intensity. It suggests that cycling exercise is an effective way of enhancing ventilation in COPD patients.