336 resultados para TROPICAL FRUIT CROPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of humic substances of different composts to the synthesis of humin in a tropical soil was evaluated. Increasing doses (0, 13, 26, 52, and 104 Mg ha-1) of five different composts consisting of agroinpowderrial residues were applied to a Red-Yellow Latosol. These composts were chemically characterized and 13C NMR determined and the quantity of the functional alkyl groups of humic acids applied to the soil as compost was estimated. Thirty days after application of the treatments, organic matter samples were collected for fractionation of humic acids (HA), fulvic acids (FA) and humin (HU), from which the ratios HA/FA and (HA + FA)/HU were calculated. The application of the composts based on castor cake resulted in the highest HU levels in the soil; alkyl groups of the HA fraction of the composts were predominant in the organic components added to the HU soil fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A matéria orgânica do solo (MOS) é um dos grandes reservatórios de carbono (C) da Terra e constitui um dos principais componentes do ciclo do C. Turfeiras, ambientes acumuladores de MOS, são produto da decomposição de vegetais, que se desenvolvem e se acumulam em ambientes saturados com água, sendo o estádio inicial da sequência de carbonificação. A fitomassa participa de forma marcante no ciclo global do C, armazenando em torno de 85 % de todo o C terrestre acima do solo. O tecido vegetal é composto principalmente por lignina, celulose e hemicelulose, constituindo até 85 % da biomassa seca. As plantas discriminam C de forma diferenciada, em razão de seu ciclo fotossintético (C3, C4 e CAM). As turfeiras da Serra do Espinhaço Meridional (SdEM-MG) são colonizadas por vegetação de Campo Limpo Úmido (CLU) e de Floresta Estacional Semidecidual (FES), onde ocorrem espécies dos ciclos fotossintéticos C3 e C4. Este trabalho objetivou avaliar a contribuição dessas duas fitofisionomias para o acúmulo de MOS, por meio da avaliação da fitomassa e da composição lignocelulósica e isotópica da vegetação e da MOS. A turfeira estudada localiza-se na SdEM e ocupa 81,75 ha. Para a estimativa da fitomassa do CLU e da FES, foram marcadas três parcelas de 0,5 x 0,5 m em cada fitofisionomia, onde todos os indivíduos da parcela foram cortados e armazenados. Para as análises isotópicas e lignocelulósicas da vegetação, identificaram-se as espécies dominantes em cada fitofisionomia. Amostras de solo foram coletadas em três locais representativos sob cada fitofisionomia, a cada 5 cm de profundidade, até 50 cm. Foram extraídas a celulose e a lignina das folhas das 15 espécies dominantes e das 60 amostras de turfeira para quantificação e determinação dos valores de δ13C e δ15N. Para datação da MOS, o 14C foi determinado em três profundidades, sob o CLU e a FES. A produção da fitomassa da FES foi muito superior à produção da do CLU. Os sinais isotópicos e a composição lignocelulósica da vegetação e da matéria orgânica do solo evidenciaram que a turfeira foi formada pela deposição de matéria orgânica da vegetação que a coloniza. O crescimento vertical e a taxa de acúmulo de C foram muito mais elevados sob a FES do que sob o CLU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grande parte da matéria orgânica de Organossolos das turfeiras é composta por substâncias húmicas, formadas pela transformação de resíduos orgânicos pelos microrganismos do solo e pela polimerização dos compostos orgânicos em macromoléculas resistentes à degradação biológica. Os processos de humificação da matéria orgânica do solo (MOS) ainda são pouco compreendidos e o conhecimento sobre os precursores das substâncias húmicas é limitado, sendo apresentadas rotas diferentes para a formação dessas substâncias. Contudo, em todas as rotas, destaca-se a participação da lignina. Isótopos estáveis (13C, 15N) podem ser utilizados para rastrear processos de humificação da MOS, por meio da identificação de seus precursores. Este trabalho teve como objetivo avaliar comparativamente a composição isotópica da vegetação das fitofisionomias que colonizam uma turfeira tropical de altitude composta de Campo Limpo Úmido (CLU) e de Floresta Estacional Semidecidual (FES), em relação à composição isotópica das substâncias húmicas da MOS. A turfeira estudada ocupa 81,75 ha. Para as análises isotópicas e lignocelulósicas da vegetação, foram identificadas as espécies dominantes em cada fitofisionomia. Amostras de solo foram coletadas em três locais representativos sob cada fitofisionomia, a cada 5 cm de profundidade, até 50 cm. As substâncias húmicas dessas amostras foram fracionadas, assim como calculados os valores de δ13C e δ15N nas frações húmicas, respectivamente a partir da determinação dos isótopos estáveis 12C e 13C e 14N e 15N. Os teores de lignina e seus valores de δ13C são mais elevados na vegetação e MOS sob FES em relação à vegetação e MOS sob CLU. Os teores de humina são mais elevados entre as substâncias húmicas na MOS, sob as duas fitofisionomias; os de ácidos húmicos são mais elevados na MOS sob CLU, em relação à FES; e os de ácidos fúlvicos são mais elevados na MOS sob a FES, em relação ao CLU. O δ13C da lignina apresenta similaridade elevada em relação ao δ13C da humina, dos ácidos húmicos e dos ácidos fúlvicos. As variações na composição lignocelulósica das espécies que colonizam o CLU e a FES promovem diferenças nas taxas e nos produtos da humificação da MOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain yield of upland rice under no-tillage has been unsatisfactory and one reason could be the nitrate/ammonium balance in the soil. Cover crops and nitrogen fertilization can be used to change the nitrate/ammonium relation in the soil and improve conditions for the development of upland rice in the no-tillage (NT) system. The aim was to study the effect of cover crops and nitrogen sources on grain yield of upland rice under no tillage. The study was carried out on the Fazenda Experimental Lageado, in Botucatu, State of São Paulo, Brazil, in an Oxisol area under no-tillage for six years. The experiment was arranged in a randomized block split-plot design with four replications. The plots consisted of six cover crop species (Brachiaria brizantha, B. decumbens, B. humidicola, B. ruziziensis, Pennisetum americanum, and Crotalaria spectabilis) and the split-plots of seven forms of N fertilizer management. Millet is the best cover crop to precede upland rice under NT. The best form of N application, as nitrate, is in split rates or total rate at topdressing or an ammonium source with or without a nitrification inhibitor, in split doses. When the cover crops C. spectabilis, B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis preceded rice, they induced the highest grain yield when rice was fertilized with N as ammonium sulfate source + nitrification inhibitor in split rates or total dose at topdressing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.