250 resultados para RHODNIUS ROBUSTUS
Resumo:
In order to determine if habitat similarity is correlated with a similarity of sensilla pattern, we analyzed six species of Triatominae present in two biogeographic regions of Brazil: the "caatinga" and the "cerrado". In broad terms Triatoma infestans (cerrado) and T. brasiliensis (caatinga) are found in human domiciles, T. sordida (cerrado) and T. pseudomaculata (caatinga) colonize peridomestic habitats, and Rhodnius neglectus (cerrado) and R. nasutus (caatinga) inhabit palm tree crowns. The number and distribution of four sensilla types (bristles, thin and thick walled trichoidea, and basiconica) were compared in these species. Sexual dimorphism of sensilla patterns was noted in T. sordida, T. brasiliensis and T. pseudomaculata. A principal component analysis showed three main groups: (i) species that live in the palms, (ii) domiciliated species and (iii) those living in the peridomestic habitat. T. infestans almost exclusively domestic, was placed at the centre of the canonical map and some individuals of other species overlapped there. These results support the idea that the patterns of antennal sensilla are sensitive indicators of adaptive process in Triatominae. We propose that those species that inhabit less stable habitats possess more types of sensilla on the pedicel, and higher number of antennal sensilla.
Resumo:
Triatoma nitida was found in 14 (0.4%) out of 3,726 houses located in six departments across Guatemala, which were surveyed from 1994 to 1998 by the man-hour collection method. Compared to previous information, the distribution of T. nitida in Guatemala has increased from five to nine departments; the species is present in mild climates at altitudes from 960 to 1,500 m. Fourteen percent of the intradomestic T. nitida were infected with Trypanosoma cruzi. The species was often found in conjunction with other triatomines (T. dimidiata and Rhodnius prolixus). The domestic and peridomestic presence of T. nitida in Guatemala was rare, but occasionally this species was colonizing human-made constructions. T. nitida appears to have a low importance as Chagas disease vector in Guatemala, as indicated by its scarce presence in the domestic habitats and defecation patterns. However, it clearly has potential to become a Chagas vector so we recommend an on-going study of the intradomestic presence of T. nitida following the control programs in Guatemala. Morphometric analysis of 47 T. nitida males from three localities showed quantitative differences between the populations, which indicates that geographic distance is an important factor in the structuring of T. nitida populations.
Resumo:
In order to assay the triatomine infestation and domiciliation in the rural area of Jaguaruana district, state of Ceará, Brazil, we studied, from November 2000 to April 2002, 4 localities comprising 158 domiciles as a whole, with an average of 4 inhabitants/house, who are dwelling in there for more than 7 years. Most houses have tile-covered roofs and the walls built with plaster-covered bricks (57%), followed by bricks without plaster (33%), and mud walls (7.5%). A total of 3082 triatomines were captured from different locations, according to the following capture plan: (a) intradomiciles: 238 Triatoma brasiliensis, 6 T. pseudomaculata, 9 Rhodnius nasutus, and 2 Panstrongylus lutzi; (b) peridomiciles (annexes): 2069 T. brasiliensis, 223 T. pseudomaculata, 121 R. nasutus, and 1 P. lutzi; (c) wild, in carnauba palms (Copernicia prunifera): 413 R. nasutus. From the captured triatomines, 1773 (57.5%) were examined. The natural index of Trypanosoma cruzi infection ranged from 10.8% to 30.2% (average of 17%), depending on the species and the location from where the triatomines were captured.
Resumo:
Artificial ecotopes of 121 peridomiciliary environments in four rural localities in the state of Ceará, Brazil, were studied and the type of material of the ecotopes was identified as triatomine infestation. Two thousand two hundred and four Triatoma brasiliensis Neiva, 340 Triatoma pseudomaculata Corrêa and Espínola, 121 Rhodnius nasutus Stall, and 5 Panstrongylus lutzi (Neiva and Pinto) were captured. Out of the 323 ecotopes found (X =2.0 ± 1.8 per dwelling) such as pigpens, henhouses, corrals, perches, dovecotes, piles of roofing tiles, bricks, wood, and straw 30.3% were infested by triatomines in all different developmental stages, including eggs. A substantial number of triatomines were found in perches, however the largest infestation took place in roofing materials used in the construction of goat/sheep corrals, henhouses, and pigpens, where 98% of them were captured: 1372 triatomines were located in the roofing tile covers, 285 in the straw, 187 in the perches, 77 in the coverings of roofing tiles and straw, and 13 in the straw and wood. Among all the different pile of materials, roofing tiles were the most infested (50%) followed by bricks (38.9%) and woods (36.1%). T. brasiliensis colonized mainly brick piles (chi2=16.539; p < 0.05) and roofing tiles (chi2=5,090.58; p < 0.05); T. pseudomaculata preferred wood perches (chi2= 472.39; p < 0.05) and woodpiles (chi2=126.0 p < 0.05), and R. nasutus was principally found in roofing straw (chi2=384.43; p < 0.05). These findings suggest that triatomines tend to colonize peridomiciliary ecotopes similar to their original habitats.
Resumo:
Cytogenetics of triatomines have been a valuable biological tool for the study of evolution, taxonomy, and epidemiology of these vectors of Trypanosoma cruzi. Here we present a single microtube protocol that combines micro-centrifugation and micro-spreading, allowing high quality cytogenetic preparations from male gonadal material of Rhodnius prolixus and Triatoma lecticularia. The amount of cellular scattering can be modulated, which can be useful if small aggregates of synchronous cells are desired. Moreover, a higher number of slides per gonad can be obtained with fully flattened clean chromosomal spreads with minimum overlaps, optimal for classical and modern molecular cytogenetic analyses.
Resumo:
Trypanosoma cruzi and Trypanosoma rangeli-like trypanosomes have been found in a variety of neotropical bat species. In this study, bats (Artibeus lituratus, Carollia perspicillata, Desmodus rotundus, Glossophaga soricina, Molossus molossus, Phyllostomus hastatus) were maintained under controlled conditions, and experiments were conducted to determine how they might become infected naturally with trypanosomes. All bats were first screened for existing infections by hemoculture and the examination of blood smears, and only apparently uninfected animals were then used in the experiments. Proof was obtained that the triatomine bug Rhodnius prolixus would readily feed upon some of the bats, and two species became infected after being bitten by bugs infected with T. rangeli. Some bats also became infected by ingesting R. prolixus carrying T. cruzi, or following subcutaneous or intragastic inoculation with fecal suspensions of R. prolixus containing T. cruzi. P. hastatus became infected after ingesting mice carrying T. cruzi. All of the bats studied inhabit roosts that may be occupied by triatomine bugs and, with the exception of D. rotundus, all also feed to at least some extent upon insects. These findings provide further evidence of how bats may play significant roles in the epidemiology of T. cruzi and T. rangeli in the New World tropics.
Resumo:
The Andean Countries' Initiative (ACI) for controlling Chagas disease was officially created in 1997 within the framework of the Hipolito Unanue Agreement (UNANUE) between the Ministries of Health of Colombia, Ecuador, Peru, and Venezuela. Its objective was to interrupt transmission via vector and transfusion in the region, taking into account that there are 12.5 million people at risk in the four Andean countries forming the initiative in the area and around 3 million people are infected by Trypanosoma cruzi. The progress of control activities for the vector species present in the Andean sub-region, for different reasons, has been slow and control interventions have still not been installed in all geographical areas occupied by the target species. This has been partly due to lack of knowledge about these vector populations' biological characteristics, and consequent uncertainty about which are the appropriate control measures and strategies to be implemented in the region. The main vector species present important similarities in Venezuela and Colombia and in Ecuador and Northern Peru and they can be approached in a similar way throughout the whole regions, basing approaches on and adapting them to the current strategies being developed in Venezuela during the 1960s which have been progressively adopted in the Southern Cone and Central-American region. Additional measures are needed for keeping endemic areas free from Rhodnius prolixus silvatic populations, widely spread in the Orinoco region in Colombia and Venezuela. Regarding aetiological treatment, it is worth mentioning that (with the exception of Colombia) none of the other countries forming the ACI have registered medicaments available for treating infected young people. There are no suitable follow-up programmes in the sub-region or for treating cases of congenital Chagas disease. An integral and integrated programme encompassing all the aspects including transmission by transfusion which seems to have achieved extremely encouraging results in all countries, are urgently needed.
Resumo:
Chagas disease in Central America is known since 1913 when the first human case was reported in El Salvador. The other Central American countries reported their first cases between 1933 and 1967. On October 1997 was launched the Central American Initiative for Chagas Disease Control (IPCA). The objectives of this sub-regional Initiative are: (1) the elimination of Rhodnius prolixus in Central America; (2) the reduction of the domiciliary infestation of Triatoma dimidiata; and (3) the elimination of the transfusion transmission of Trypanosoma cruzi. Significant advancements being close to the elimination of R. prolixus in Central America and the control of the transfusion transmission has been a transcendent achievement for the sub-region. The main challenges that the IPCA will have in the close future are: developing effective strategies for control and surveillance of T. dimidiata; and surveillance of other emerging triatominae species like R. pallescens, T. nitida, and T. ryckmani.
Resumo:
An ecological-evolutionary classification of Amazonian triatomines is proposed based on a revision of their main contemporary biogeographical patterns. Truly Amazonian triatomines include the Rhodniini, the Cavernicolini, and perhaps Eratyrus and some Bolboderini. The tribe Rhodniini comprises two major lineages (pictipes and robustus). The former gave rise to trans-Andean (pallescens) and Amazonian (pictipes) species groups, while the latter diversified within Amazonia (robustus group) and radiated to neighbouring ecoregions (Orinoco, Cerrado-Caatinga-Chaco, and Atlantic Forest). Three widely distributed Panstrongylus species probably occupied Amazonia secondarily, while a few Triatoma species include Amazonian populations that occur only in the fringes of the region. T. maculata probably represents a vicariant subset isolated from its parental lineage in the Caatinga-Cerrado system when moist forests closed a dry trans-Amazonian corridor. These diverse Amazonian triatomines display different degrees of synanthropism, defining a behavioural gradient from household invasion by adult triatomines to the stable colonisation of artificial structures. Anthropogenic ecological disturbance (driven by deforestation) is probably crucial in the onset of the process, but the fact that only a small fraction of species effectively colonises artificial environments suggests a role for evolution at the end of the gradient. Domestic infestation foci are restricted to drier subregions within Amazonia; thus, populations adapted to extremely humid rainforest microclimates may have limited chances of successfully colonising the slightly drier artificial microenvironments. These observations suggest several research avenues, from the use of climate data to map risk areas to the assessment of the synanthropic potential of individual vector species.
Resumo:
Despite the relevant achievements in the control of the main Chagas disease vectors Triatoma infestans and Rhodnius prolixus, several factors still promote the risk of infection. The disease is a real threat to the poor rural regions of several countries in Latin America. The current situation in Brazil requires renewed attention due to its high diversity of triatomine species and to the rapid and drastic environmental changes that are occurring. Using the biology, behaviour and diversity of triatomines as a basis for new strategies for monitoring and controlling the vectorial transmission are discussed here. The importance of ongoing long-term monitoring activities for house infestations by T. infestans, Triatoma brasiliensis, Panstrongylus megistus, Triatoma rubrovaria and R. prolixus is also stressed, as well as understanding the invasion by sylvatic species. Moreover, the insecticide resistance is analysed. Strong efforts to sustain and improve surveillance procedures are crucial, especially when the vectorial transmission is considered interrupted in many endemic areas.
Resumo:
Over the last 10 years, Uruguay, Chile and Brazil have been certified as being free from disease transmission by Triatoma infestans, the main domiciliated vector for Chagas disease in the Southern Cone countries. This demonstrates that programmes addressing the vector for the disease's transmission are effective. These programmes have resulted in a dramatic decrease in the incidence of Chagas disease in Latin America. Guatemala was certified a few months ago as being free from disease transmission by Rhodnius prolixus, the main domiciliated vector for Chagas disease in Central American countries. However, the main concern for different countries' current control programmes is the continuity and sustainability of future vector control actions. The prevalence and incidence figures for individuals infected by Trypanosoma cruzi in Mexico and Andean and Central American countries highlights the need for broadened strategies in the struggle against the disease and its vectors. A number of triatomine insects are parasite vectors, each with a different life history. Therefore, it is important that new vector control strategies be proposed, keeping in mind that some species are found in peridomiciliary areas and wild ecotopes. The only viable control strategy is to reduce human interactions with vector insects so that the re-infestation and re-colonisation of human habitats will not take place.
Resumo:
By macroscopic and microscopic dorsal side observation, it was noted that the IX and X segments of two species each of Panstrongylus and Triatoma terminate in an elongated way, whereas they terminate abruptly in the two species of Rhodnius. Scanning observation of the dorsal, ventral, lateral and posterior sides of the female genitalia of Panstrongylus herreri, Panstrongylus megistus, Rhodnius colombiensis, Rhodnius prolixus, Triatoma infestans and Triatoma vitticeps revealed that these six species are generally and specifically distinguished based on these elements. We describe several components that distinguish P. herreri from P. megistus: four on the dorsal side: the VII, VIII, IX and X segments, on the ventral view, three: VII sternite, VIII gonocoxite and VIII gonapophyse, on the lateral view one character, VIII gonocoxite and on the posterior view three characters: VIII and IX gonocoxite and XI gonopophyse. Comparing R. colombiensis and R. prolixus, there were three distinct characters on the dorsal side: the VII, VIII and X segments, on the ventral view three characters: the IX and X segments and VIII gonocoxite and on the posterior view four characters: the VIII, IX, X segments and VIII gonapophyse that distinguish the two species. T. infestans and T. vitticeps have four different characters on the dorsal side: the VII, VIII, IX and X segments, on the ventral view four characters: the VII and X segments, VIII gonocoxite and VIII gonapophyse, on the lateral view two characters, IX and X segments and on the posterior view four characters: the IX and X segments, VIII gonocoxite and VIII gonapophyse that distinguish the two species. Examination of the external female genitalia of six triatomine species by scanning suggests that these components are useful for taxonomical studies.
Resumo:
Rhodnius ecuadoriensis is considered the second most important vector of Chagas disease in Ecuador. It is distributed across six of the 24 provinces and occupies intradomiciliary, peridomiciliary and sylvatic habitats. This study was conducted in six communities within the coastal province of Guayas. Triatomine searches were conducted in domestic and peridomestic habitats and bird nests using manual searches, live-bait traps and sensor boxes. Synantrhopic mammals were captured in the domestic and peridomestic habitats. Household searches (n = 429) and randomly placed sensor boxes (n = 360) produced no live triatomine adults or nymphs. In contrast, eight nymphs were found in two out of six searched Campylorhynchus fasciatus (Troglodytidae) nests. Finally, Trypanosoma cruzi DNA was amplified from the blood of 10% of the 115 examined mammals. Environmental changes in land use (intensive rice farming), mosquito control interventions and lack of intradomestic adaptation are suggested among the possible reasons for the lack of domestic triatomine colonies.
Resumo:
Chagas disease control requires an innovative approach to strengthen community participation in vector surveillance. This paper presents a case study of a community-based bug-hunting campaign in Guatemala. The campaign was implemented in 2007 in the following three stages: (i) a four week preparation stage to promote bug-hunting, (ii) a one week bug-hunting stage to capture and collect bugs and (iii) a 10 week follow-up stage to analyse the bugs and spray insecticide. A total of 2,845 bugs were reported, of which 7% were Triatominae vectors, such as Rhodnius prolixus and Triatoma dimidiata. The bug-hunting campaign detected a five-six-fold higher amount of vectors in one week than traditional community-based surveillance detects in one year. The bug-hunting campaign effectively detected vectors during a short period, provided information to update the vector infestation map and increased community and political awareness regarding Chagas disease. This approach could be recommended as an effective and feasible strategy to strengthen vector surveillance on a larger scale.
Resumo:
We estimated the geographic distributions of triatomine species in Central-West Region of Brazil (CW) and analysed the climatic factors influencing their occurrence. A total of 3,396 records of 27 triatomine species were analysed. Using the maximum entropy method, ecological niche models were produced for eight species occurring in at least 20 municipalities based on 13 climatic variables and elevation. Triatoma sordida and Rhodnius neglectus were the species with the broadest geographic distributions in CW Brazil. The Cerrado areas in the state of Goiás were found to be more suitable for the occurrence of synanthropic triatomines than the Amazon forest areas in the northern part of the state of Mato Grosso. The variable that best explains the evaluated models is temperature seasonality. The results indicate that almost the entire region presents climatic conditions that are appropriate for at least one triatomine species. Therefore, it is recommended that entomological surveillance be reinforced in CW Brazil.