240 resultados para Nematophagous fungus
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
Leaf-cutting ants of the genera Atta and Acromyrmex (tribe Attini) are symbiotic with basidiomycete fungi of the genus Leucoagaricus (tribe Leucocoprineae), which they cultivate on vegetable matter inside their nests. We determined the variation of the 28S, 18S, and 5.8S ribosomal DNA (rDNA) gene loci and the rapidly evolving internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 15 sympatric and allopatric fungi associated with colonies of 11 species of leafcutter ants living up to 2,600 km apart in Brazil. We found that the fungal rDNA and ITS sequences from different species of ants were identical (or nearly identical) to each other, whereas 10 GenBank Leucoagaricus species showed higher ITS variation. Our findings suggest that Atta and Acromyrmex leafcutters living in geographic sites that are very distant from each other cultivate a single fungal species made up of closely related lineages of Leucoagaricus gongylophorus. We discuss the strikingly high similarity in the ITS1 and ITS2 regions of the Atta and Acromyrmex symbiotic L. gongylophorus studied by us, in contrast to the lower similarity displayed by their non-symbiotic counterparts. We suggest that the similarity of our L. gongylophorus isolates is an indication of the recent association of the fungus with these ants, and propose that both the intense lateral transmission of fungal material within leafcutter nests and the selection of more adapted fungal strains are involved in the homogenization of the symbiotic fungal stock.
Resumo:
Paracoccidioidomycosis (PCM) is a chronic systemic mycosis caused by the inhalation of the thermally dimorphic fungus Paracoccidioides brasiliensis as well as the recently described P. lutzii. Because the primary infection occurs in the lungs, we investigated the differential involvement of the right and left lungs in experimental P. brasiliensis infection. Lungs were collected from C57BL/6 mice at 70 days after intravenous infection with 1×106 yeast cells of a virulent strain of P. brasiliensis (Pb18). The left lung, which in mice is smaller and has fewer lobes than the right lung, yielded increased fungal recovery associated with a predominant interleukin-4 response and diminished synthesis of interferon-γ and nitric oxide compared with the right lung. Our data indicate differential involvement of the right and left lungs during experimental PCM. This knowledge emphasizes the need for an accurate, standardized protocol for tissue collection during studies of experimental P. brasiliensis infection, since experiments using the same lungs favor the collection of comparable data among different mice.
Resumo:
The influence of fungi associated with coffee fruits was verified regarding the chemical and physicochemical composition of Coffea arabica L. raw grains. The fruits were harvested at EPAMIG Experimental farm in Lavras, State of Minas Gerais - making up the different samples here analyzed. After processing and drying, the grains were incubated in wet chamber for fungal exteriorization through the blotter test method and submitted to the following analyses: polyphenoloxidase, total reducing and non-reducing sugars, clorogenic acid, titrable acidity, potassium leaching, electric conductivity and caffeine. The occurrence of the P. variable, P. rugulosum, P. funiculosum, F. equiseti, F. semitectum, A.alutaceus, A. niger and C. cladosporioides fungi in the different samples was detected. From the analysis of the results obtained, it was observed that the presence of the Aspergillus alutaceus fungus reduces the activity of the enzyme polyphenoloxidase and increases the values of potassium leaching, electric conductivity and chlorogenic acid. The incidence of the Cladosporium cladosporioides fungus influenced the average values of potassium leaching and electric conductivity.
Resumo:
This study investigated the content of total phenolic compounds and antioxidant activity in fermented rice bran in order to evaluate the effect of solid state fermentation on these properties. The process was performed with the fungus Rhizopus oryzae CTT 1217 in tray reactors at 30 °C for 120 hours. Samples of fermented rice bran were collected every 24 hours. Antioxidant property was evaluated by the diphenyl-1-picrylhydrazyl radical scavenging method and through the inhibition of enzymatic oxidation and lipid peroxidation of olive oil. The methanol extract of the biomass obtained at 96 hours of fermentation inactivated 50% of free radical in 15 minutes. The same extract reduced the peroxide value in the olive oil by 57% after 30 days of storage. The aqueous extract of the biomass obtained at 120 hours was the most efficient inhibitor of the darkening reaction catalyzed by peroxidase.
Resumo:
The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0) to L* = 45.3 and Hue angle = 69.8° (t = 3 days), whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0°) to (L* = 67.0; Hue angle = 83.8°) within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.
Resumo:
Tempeh is a food obtained by fermentation of soybean grains by the fungus Rizophus oligosporus. It is a traditional Indonesian food that presents benefits for human health protecting against diarrhea and chronic diseases. Tempeh processing includes dehulling, cooking, inoculation, and fermentation. In this study, chemical characteristics of tempeh prepared with soybean cultivars specially developed for human consumption (BRS 216, BRS 232, BRS 257, and BRS 267) were investigated. Soybean grains and tempeh obtained from these cultivars were analyzed for oil, protein, antinutrional factors, and isoflavone content. Cultivar BRS 216 presented the highest protein content in the grains (36.81%) and in tempeh (51.99%). On average, the protein content in tempeh increased 16% in relation to that of soybean grains. Isoflavone content was higher in the grains than in tempeh with significant differences among the cultivars. However, the aglycones content increased about 50% in tempeh (49.00 mg.100 g-1 on average) compared to that of raw material (soybean grains - 21.49 mg.100 g-1, on average). The content of Kunitz trypsin inhibitor (KSTI) reduced 83% in tempeh, on average, as compared to the value found in the grains. Phytic acid content was similar in both tempeh and the grains.
Resumo:
The objective of this study was to prepare roasted and lyophilized tempeh flour with soybean cultivar BRS 267 to apply them in the formulation of coconut biscuits. The cookies produced with whole soy flour and mixed flour of soybean and tempeh were evaluated for proximate composition, fatty acid profile, and isoflavone aglycones in order to verify the effects of inoculation with the fungus Rhizopus oligosporus and those of the drying processes of roasting and lyophilization on the chemical characteristics of the final product. Sensory acceptance and purchase intention of the formulated products were also evaluated. The results indicate the maintenance of linolenic acid, which is important in the prevention of coronary diseases, and an increase in the aglycones levels when the tempeh flour was used. Lipids and proteins showed differences, and the sensory analyses demonstrated similarity between the cookies with satisfactory scores for aroma, flavor, texture, and overall acceptability for both samples. when compared to the control. Purchase intent was also positive for the lyophilized and toasted tempeh flours, thus enabling the use of the roasting process as a simple drying method, for processing tempeh and obtaining a flour rich in proteins and aglycones that can be used as a partial substitute for soy flour in cookies and other bakery products.
Resumo:
The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous treatment as a substrate.
Resumo:
Huitlacoche is the Aztecs name given to the smut galls on ears of maize caused by the pathogenic plant fungus Ustilago maydis [(DC) Corda.)]. It is known as maize mushroom, and it has been considered a delicacy and in Mesoamerica. The aim of the present study was to determine the responses of some maize varieties to the growth of the fungus in order to evaluate the prospect production of these smutty ears as a maize mushroom. A 2-year study was conducted in the Mediterranean region of Turkey in 2010 and 2011. Inoculations were performed by injecting inoculum into the ear through the silk channel of plants in plots. Each treatment had control plots. Average ear-gall (huitlacoche) severity and incidence of all the varieties were at the rates of 4.0 and 41.6%, respectively. However, the highest severity of ear-gall (6.5) and incidence (60.6%) were found in Karadeniz Yıldızı flint maize variety; colossal smutty ears were formed in the maize cultivars. This study showed that certain maize cultivars (flint corn and dent corn) can be used efficiently in the production of huitlacoche.
Resumo:
AbstractThis study analyzed the addition of huitlacoche paste (HP) in baked tortilla chips (TC), evaluating its effects on functional, physicochemical and structural changes during processing. Two blue corn grains were nixtamalized, stone milled, air dried and milled to obtain flour; commercial blue corn flour (TM1) and commercial TC (TM2) were used as controls. Additions of 0, 3, 6 and 9% of HP were formulated; masas were prepared at 55% moisture content (MC), precooked and baked in an industrial machine. TC crispiness was influenced by grain characteristics and percentage of HP. Huitlacoche paste addition caused an increase in total dietary fiber (from 5.27 to 14.54%), total soluble phenolics content (from 17.52 to 37.60 mg GAE/100 g) and antioxidant capacity (from 6.74 to 7.98 μmol TE/g) in TC. Results suggest that tortilla chips added with huitlacoche can be an alternative to prepare this traditional edible fungus and produce healthier snacks, not fried and enriched with bioactive compounds.
Resumo:
Most soybean pathogens are seed transmitted, deserving emphasis the fungus Sclerotinia sclerotiorum, which has been presenting worrying levels of field incidence in some soybean cropping areas in several Brazilian states. The objective of this study was to verify the efficiency of different methods for detecting S. sclerotiorum on soybean seeds artificially infected in the laboratory and from field production areas with a historical disease incidence. Seed samples of seven different cultivars collected from naturally infested fields, and one seed sample artificially inoculated in the laboratory were used. The following detection methods recommended in the literature were compared: Blotter test at 7 ºC, 14 ºC, and 21 ºC; Rolled Paper; and Neon-S. Results demonstrated that these methods showed no repeatability and had a low sensitivity for detecting the pathogen in seeds from areas with disease incidence. They were effective, however, for its detection on artificially inoculated seeds. In the Blotter test method at 7 ºC, there was a lower incidence of other fungi considered undesirable during seed analysis.
Resumo:
Maize seeds, infected by Stenocarpella species, are important sources of inoculum for the introduction and dissemination of stalk and ear rot and macrospore leaf spot diseases. The use of healthy seeds is an important strategy for the preventive control of these diseases. However, one of the difficulties in the health quality control programs for maize seeds is the availability of a reliable and quick method for detecting these fungi during routine seed analyses. Therefore, the objective of the present study was to investigate the possibility of using the PCR technique as an alternative method for accurately detecting these pathogens in maize seed samples. Maize seeds were kept in contact with S. maydis colonie developed in PDA media containing mannitol at -1.4 MPa for 72 h. The seed samples used in this study were prepared with infected seeds at incidences of 100, 20, 10, 2, 1 and zero %.The primers used were able to detect S. maydis fungi in association with seeds with a maximum of 2% , however those primers were not able to differentiate between the two species.
Adhesion of uredospores of Phakopsora pachyrhizi on soybean seeds and their viability during storage
Resumo:
To study adhesion and viability of uredospores of the fungus Phakopsora pachyrhizi on soybean seeds during storage, suspension tests of those uredospores were carried out by washing seeds at each 30 days interval. Furthermore, germination and inoculation tests of uredospores on soybean plants were performed with uredospores collected from seeds of two soybean production areas, located in the municipalities "Chapada dos Guimarães" and "Tangará da Serra", State of Mato Grosso, Brazil. High levels of uredospores infestation were detected before storage [249.31 and 85.18 uredospores/100 seeds (U/100)] on seeds collected in both localities, respectively. After 30 days storage, these figures were 46.12 and 122.5 U/100; at 60 days were 14.62 and 26.62 U/100; and at 90 days were only 2.87 and 3,68 U/100, respectively; dropping to zero after 120 days storage. The percentage of germinated uredospores decreased with increasing storage periods and at 120 days germination percentage was nil. When uredospores were inoculated on soybean plants, rust symptoms were only observed for uredospores collected from freshly harvested seeds. Uredospores associated to soybean seed germinate until 90 days after storage, but are not viable after this time span. Infection of plants only occurs with inoculation of uredospores obtained from freshly harvested seeds.
Resumo:
The fungus Alternaria alternata was quantified in 75 wheat seed samples collected from three different regions of southern Brazil for Cropping and Use Value (CUV) I, II and III. Fungal presence was evaluated in two hundred disinfested seeds per sample before sowing in a potato-dextrose-agar medium + antibiotic (PDA+A). Fungus survival was evaluated every 45 days for 180 days for three seed batches from six wheat cultivars stored in propylene bags in a storehouse, with air temperature varying between 18 to 22 °C and relative air humidity around 60%. The efficacy of carboxin+thiram, difenoconazol, thiram, triadimenol, triticonazol and triticonazol + iprodione fungicides to control A. alternata was determined. A. alternata was detected in all the samples with an incidences of 39.6 %, 38.8% and 35.9% for the CUV I, CUV II and CUV III regions, respectively. The highest mean incidence of the fungus was found in the CUV I region, the coolest and most humid, and was significantly different from the other two regions. The average reduction in A. alternata viability in the wheat cultivar seeds was 49.5% during the 180 days of storage (inter-harvest period), demonstrating that infected seeds are the primary inoculum source for the fungus. The triticonazol + iprodione fungicide mixture efficiently controls A. alternata.