265 resultados para Inhibition Assay
Resumo:
The cytotoxicity of the dichloromethane crude extract (DCE), obtained from the aerial parts of Pothomorphe umbellata (L.) Miq (Piperaceae), was evaluated against nine human cancer cell lines (MCF-7, NCI-ADR/RES, OVCAR-3, PC-3, HT-29, NCI-H460, 786-O, UACC-62, K-562). The DCE presented antiproliferative activity with good potency against all cell lines at low concentrations (between 4.0 and 9.5 µg/mL) and with selectivity (1.55 µg/mL) for the leukemia cell line (K-652). DCE (100, 200, 300 and 400 mg/kg, ip) was also evaluated in the Ehrlich ascites tumor model. Both the survival number and the life span of the animals that died increased by at least 45 and 50%, respectively (8 animals per group), demonstrating P. umbellata extract potential anticancer activity. The results of the in vivo antitumor activity prompted the fractionation of the crude extract. The crude extract was submitted to dry column chromatography with dichloromethane-methanol (99:1). The column effluent fractions were extracted with methanol, dried under vacuum yielding fractions FR1 (less polar), FR2 (medium polarity), and FR3 (polar), which were analyzed for their growth inhibition or cytotoxic properties by a 48-h sulforhodamine B cell viability assay by measuring the total protein content. FR1 demonstrated high potency and cytotoxicity, a result compatible with the high toxicity of oxalic acid; FR2, containing 4-nerolidylcathecol, presented the lowest cytotoxic activity compared to the other two fractions but with selectivity for prostate cancer cell line; FR3, containing a mixture of steroids described in the literature as possessing various biological activities, also presented potent anticancer in vitro activity. These results suggest that P. umbellata DCE in vivo antitumor activity may be a consequence of the activity of different active principles.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.
Resumo:
The cytokinesis-block micronucleus (CBMN) assay is one of the standard cytogenetic tools employed to assess chromosomal damage subsequent to exposure to genotoxic/cytotoxic agents, and is widely applicable to plant, animal and human cells. In the present study, the CBMN assay was used to assess the baseline damage in binuclear human peripheral blood lymphocytes exposed to 25 µg/L p,p'-DDT for 1, 2, 24, and 48 h by measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. These new scoring criteria facilitated the detection of different types of clastogenic and aneugenic effects induced by this type of pollutant. With these criteria, CBMN can also be used to measure nucleoplasmic bridges which are considered to be consequences of chromosome rearrangements and nuclear buds which are biomarkers of altered gene amplification and gene dosage. The total number of micronuclei observed in binuclear human peripheral blood lymphocytes of the exposed samples (ranging from 32 to 47) was significantly greater (P < 0.05) than that detected in the unexposed (0 time) control sample, where the total number of micronuclei was 7. The number of nucleoplasmic bridges and nuclear buds obtained after 24 and 48 h was also significantly (P < 0.05) greater in the samples treated with p,p'-DDT than in the unexposed control samples. Thus, our results confirmed the usefulness of the new criteria applicable for the CBMN assay employed in measuring the DNA damage and its role of a sensitive cytogenetic biomarker.
Resumo:
We determined the anti-inflammatory activity of standardized extracts of four medicinal plant species (Baccharis incarum, B. boliviensis, Chuquiraga atacamensis, Parastrephia lucida) that grow in the Argentine Puna (3800 m above sea level) and that are used to reduce oxidative stress and alleviate gout and arthritic pain. The extracts of plant aerial parts were standardized in terms of total phenolic compounds and flavone/flavanone content and free radical scavenging activity. All extracts showed high phenolic compound concentration (0.5-1.6 mg/mL), mainly flavones and flavonols (0.1-0.8 mg/mL). The extracts showed hydrogen donating ability (DPPH and ABTS) and reactive oxygen species scavenging activity (O2●-, OH-, H2O2). The ability of the extracts to inhibit cyclooxygenase enzymes (COX-1 and COX-2) was determined by calculating percent inhibition of PGE2 production measured by enzyme immunoassay. All extracts inhibited both enzymes with IC50 values of 2.0 to 16.7 µg/mL. The anti-inflammatory activity of B. incarum and C. atacamensis extracts was higher than that of B. boliviensis and P. lucida. The IC50 values obtained for indomethacin were 0.11 and 0.78 µM for COX-1 and COX-2, respectively. The present results are consistent with the anecdotal use of these species in phytotherapic preparations.
Resumo:
In the present study, we investigated the effects of acute intracerebroventricular (icv) insulin administration on central mechanisms regulating urinary sodium excretion in simultaneously centrally NG-nitro-L-arginine methylester (L-NAME)-injected unanesthetized rats. Male Wistar-Hannover rats were randomly assigned to one of five groups: a) icv 0.15 M NaCl-injected rats (control, N = 10), b) icv dose-response (1.26, 12.6 and 126 ng/3 µL) insulin-injected rats (N = 10), c) rats icv injected with 60 µg L-NAME in combination with NaCl (N = 10) or d) with insulin (N = 10), and e) subcutaneously insulin-injected rats (N = 5). Centrally administered insulin produced an increase in urinary output of sodium (NaCl: 855.6 ± 85.1 Δ%/min; 126 ng insulin: 2055 ± 310.6 Δ%/min; P = 0.005) and potassium (NaCl: 460.4 ± 100 Δ%/min; 126 ng insulin: 669.2 ± 60.8 Δ%/min; P = 0.025). The urinary sodium excretion response to icv 126 ng insulin microinjection was significantly attenuated by combined administration of L-NAME (126 ng insulin: 1935 ± 258.3 Δ%/min; L-NAME + 126 ng insulin: 582.3 ± 69.6 Δ%/min; P = 0.01). Insulin-induced natriuresis occurred by increasing post-proximal sodium excretion, despite an unchanged glomerular filtration rate. Although the rationale for decreased urinary sodium excretion induced by combined icv L-NAME and insulin administration is unknown, it is tempting to suggest that perhaps one of the efferent signals triggered by insulin in the CNS may be nitrergic in nature.
Resumo:
The cardiovascular electrophysiologic basis for the action of pyridostigmine, an acetylcholinesterase inhibitor, has not been investigated. The objective of the present study was to determine the cardiac electrophysiologic effects of a single dose of pyridostigmine bromide in an open-label, quasi-experimental protocol. Fifteen patients who had been indicated for diagnostic cardiac electrophysiologic study underwent two studies just before and 90-120 min after the oral administration of pyridostigmine (45 mg). Pyridostigmine was well tolerated by all patients. Wenckebach nodal anterograde atrioventricular point and basic cycle were not altered by pyridostigmine. Sinus recovery time (ms) was shorter during a 500-ms cycle stimulation (pre: 326 ± 45 vs post: 235 ± 47; P = 0.003) but not during 400-ms (pre: 275 ± 28 vs post: 248 ± 32; P = 0.490) or 600-ms (pre: 252 ± 42 vs post: 179 ± 26; P = 0.080) cycle stimulation. Pyridostigmine increased the ventricular refractory period (ms) during the 400-ms cycle stimulation (pre: 238 ± 7 vs post: 245 ± 9; P = 0.028) but not during the 500-ms (pre: 248 ± 7 vs post: 253 ± 9; P = 0.150) or 600-ms (pre: 254 ± 8 vs post: 259 ± 8; P = 0.255) cycle stimulation. We conclude that pyridostigmine did not produce conduction disturbances and, indeed, increased the ventricular refractory period at higher heart rates. While the effect explains previous results showing the anti-arrhythmic action of pyridostigmine, the clinical impact on long-term outcomes requires further investigation.
Resumo:
The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.
Resumo:
Arsenic trioxide (ATO) is a strong inducer of apoptosis in malignant hematological cells. Inducible phosphatidyl inositol 3 kinase (PI3K)-Akt activation promotes resistance to ATO. In the present study, we evaluated whether E3 ubiquitin ligase Cbl-b, a negative regulator of PI3K activation, is involved in the action of ATO. The effect of ATO on cell viability was measured by the Trypan blue exclusion assay or by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined by flow cytometry and protein expression was assayed by Western blotting. ATO decreased the viability of HL60 cells and induced cellular apoptosis, which was accompanied by transient activation of Akt. The PI3K/Akt inhibitor, LY294002, significantly increased ATO-induced apoptosis (P < 0.05). In addition, ATO up-regulated the expression of Cbl-b proteins. Furthermore, ATO inhibited cell viability with an IC50 of 18.54 μM at 24 h in rat basophilic leukemia-2H3 cells. ATO induced cellular apoptosis with transient activation of Akt and Cbl-b was also up-regulated. Rat basophilic leukemia-2H3 cells transfected with a dominant negative (DN) Cbl-b mutation showed overexpression of Cbl-b (DN) and enhanced Akt activation. Compared with cells transfected with vector, ATO-induced apoptosis was decreased and G2/M phase cells were increased at the same concentration (P < 0.05). The PI3K/Akt inhibitor, LY294002, re-sensitized Cbl-b (DN) overexpressing cells to ATO and reversed G2/M arrest (P < 0.05). Taken together, these results suggest that Cbl-b potentiates the apoptotic action of ATO by inhibition of the PI3K/Akt pathway.
Resumo:
Vaccination with xenogeneic and syngeneic endothelial cells is effective for inhibiting tumor growth. Nontoxic diphtheria toxin (CRM197), as an immunogen or as a specific inhibitor of heparin-binding EGF-like growth factor, has shown promising antitumor activity. Therefore, immunization with or administration of viable human umbilical vein endothelial cells (HUVECs) combined with CRM197 could have an enhanced antitumor effect. Six-week-old C57BL/6J male mice were vaccinated with viable HUVECs, 1 x 10(6) viable HUVECs combined with 100 μg CRM197, or 100 μg CRM197 alone by ip injections once a week for 4 consecutive weeks. RM-1 cells (5 x 10(5)) were inoculated by sc injection as a preventive procedure. During the therapeutic procedure, 6-week-old male C57BL/6J mice were challenged with 1 x 10(5) RM-1 cells, then injected sc with 1 x 10(6) viable HUVECs, 1 x 10(6) viable HUVECs + 100 μg CRM197, and 100 μg CRM197 alone twice a week for 4 consecutive weeks. Tumor volume and life span were monitored. We also investigated the effects of immunization with HUVECs on the aortic arch wall and on wound healing. Vaccination with or administration of viable HUVECs+CRM197 enhanced the inhibition of RM-1 prostatic carcinoma by 24 and 29%, respectively, and prolonged the life span for 3 and 4 days, respectively, compared with those of only vaccination or administration with viable HUVECs of tumor-bearing C57BL/6J mice. Furthermore, HUVEC immunization caused some damage to the aortic arch wall but did not have remarkable effects on the rate of wound healing; the wounds healed in approximately 13 days. Treatment with CRM197 in combination with viable HUVECs resulted in a marked enhancement of the antitumor effect in the preventive or therapeutic treatment for prostatic carcinoma in vivo, suggesting a novel combination for anti-cancer therapy.
Resumo:
The Caco-2 cell line has been used as a model to predict the in vitro permeability of the human intestinal barrier. The predictive potential of the assay relies on an appropriate in-house validation of the method. The objective of the present study was to develop a single HPLC-UV method for the identification and quantitation of marker drugs and to determine the suitability of the Caco-2 cell permeability assay. A simple chromatographic method was developed for the simultaneous determination of both passively (propranolol, carbamazepine, acyclovir, and hydrochlorothiazide) and actively transported drugs (vinblastine and verapamil). Separation was achieved on a C18 column with step-gradient elution (acetonitrile and aqueous solution of ammonium acetate, pH 3.0) at a flow rate of 1.0 mL/min and UV detection at 275 nm during the total run time of 35 min. The method was validated and found to be specific, linear, precise, and accurate. This chromatographic system can be readily used on a routine basis and its utilization can be extended to other permeability models. The results obtained in the Caco-2 bi-directional transport experiments confirmed the validity of the assay, given that high and low permeability profiles were identified, and P-glycoprotein functionality was established.
Resumo:
To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6%, P < 0.05) and at 72 h (34.5 vs 93.5%, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.
Resumo:
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.
Resumo:
In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.
Resumo:
Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg%] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg%], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.
Resumo:
REGγ is a proteasome activator that facilitates the degradation of small peptides. Abnormally high expression of REGγ has been observed in thyroid carcinomas. The purpose of the present study was to explore the role of REGγ in poorly differentiated thyroid carcinoma (PDTC). For this purpose, small interfering RNA (siRNA) was introduced to down-regulate the level of REGγ in the PDTC cell line SW579. Down-regulation of REGγ at the mRNA and protein levels was confirmed by RT-PCR and Western blot analyses. FACS analysis revealed cell cycle arrest at the G1/S transition, the MTT assay showed inhibition of cell proliferation, and the Transwell assay showed restricted cell invasion. Furthermore, the expression of the p21 protein was increased, the expression of proliferating cell nuclear antigen (PCNA) protein decreased, and the expression of the p27 protein was unchanged as shown by Western blot analyses. REGγ plays a critical role in the cell cycle, proliferation and invasion of SW579 cells. The alteration of p21 and PCNA proteins related to the down-regulation of REGγ suggests that p21 and PCNA participate in the process of REGγ regulation of cell cycle progression and cell proliferation. Thus, targeting REGγ has a therapeutic potential in the management of PDTC patients.