264 resultados para 316.7[821.2]
Resumo:
The nucleus tractus solitarius (NTS) plays an important role in the control of autonomic reflex functions. Glutamate, acting on N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic receptors, is the major neurotransmitter in this nucleus, and the relative contribution of each receptor to signal transmission is unclear. We have examined NMDA excitatory postsynaptic currents (NMDA-EPSCs) in the subpostremal NTS using the whole cell patch clamp technique on a transverse brainstem slice preparation. The NMDA-EPSCs were evoked by stimulation of the solitary tract over a range of membrane potentials. The NMDA-EPSCs, isolated pharmacologically, presented the characteristic outward rectification and were completely blocked by 50 µM DL-2-amino-5-phosphonopentanoic acid. The I-V relationship of the NMDA response shows that current, with a mean (± SEM) amplitude of -41.2 ± 5.5 pA, is present even at a holding potential of -60 mV, suggesting that the NMDA receptors are weakly blocked by extracellular Mg2+ at near resting membrane potentials. This weak block can also be inferred from the value of 0.67 ± 0.17 for parameter delta obtained from a fit of the Woodhull equation to the I-V relationship. The maximal inward current measured on the I-V relationship was at -38.7 ± 4.2 mV. The decay phase of the NMDA currents was fitted with one exponential function with a decay time constant of 239 ± 51 and 418 ± 80 ms at a holding potential of -60 and +50 mV, respectively, which became slower with depolarization (e-fold per 145 mV). The biophysical properties of the NMDA receptors observed in the present study suggest that these receptors in the NTS contain NR2C subunits and may contribute to the synaptic signal integration.
Resumo:
Gastroesophageal reflux (GER) disorder was studied in children and adolescents with chronic and/or recurrent rhinosinusitis not associated with bronchial asthma. Ten children with a clinical and radiological diagnosis of chronic and/or recurrent rhinosinusitis, consecutively attended at the Pediatric Otolaryngology Outpatient Clinic, Federal University of São Paulo, were evaluated. Prolonged esophageal pH monitoring was used to investigate GER disorder. The mean age of the ten patients evaluated (eight males) was 7.4 ± 2.4 years. Two patients presented vomiting as a clinical manifestation and one patient presented retrosternal pain with a burning sensation. Twenty-four-hour esophageal pH monitoring was performed using the Sandhill apparatus. An antimony probe electrode was placed in the lower third of the esophagus, confirmed by fluoroscopy and later by a chest X-ray. The parameters analyzed by esophageal pH monitoring included: total percent time of the presence of acid esophageal pH, i.e., pH below 4 (<4.2%); total number of acid episodes (<50 episodes); number of reflux episodes longer than 5 min (3 or less), and duration of the longest reflux episode (<9.2 min). One patient (1/10, 10%) presented a 24-h esophageal pH profile compatible with GER disorder. This data suggest that an association between chronic rhinosinusitis not associated with bronchial asthma and GER disorder may exist in children and adolescents, especially in those with compatible GER disorder symptoms. In these cases, 24-h esophageal pH monitoring should be performed before indicating surgery, since the present data suggest that 10% of chronic rhinosinusitis surgeries can be eliminated.
Resumo:
The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne) and flow-oriented (Triflo II and Respirex) devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45º). Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02) and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01) were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm). Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively). Abdominal motion was larger (P < 0.05) during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex). We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices.
Resumo:
Centrally stimulated sweat rate produced by graded exercise until exhaustion was compared to the local sweat rate induced by pilocarpine, often used as a sweating index for healthy individuals. Nine young male volunteers (22 ± 4 years) were studied in temperate environment in two situations: at rest and during progressive exercise with 25 W increases every 2 min until exhaustion, on a cycle ergometer. In both situations, sweating was induced on the right forearm with 5 ml 0.5% pilocarpine hydrochloride applied by iontophoresis (1.5 mA, 5 min), with left forearm used as control. Local sweat rate was measured for 15 min at rest. During exercise, whole-body sweat rate was calculated from the body weight variation. Local sweat rate was measured from the time when heart rate reached 150 bpm until exhaustion and was collected using absorbent filter paper. Pharmacologically induced local sweat rate at rest (0.4 ± 0.2 mg cm-2 min-1) and mean exercise-induced whole-body sweat rate (0.4 ± 0.1 mg cm-2 min-1) were the same (P > 0.05) but were about five times smaller than local exercise-induced sweat rate (control = 2.1 ± 1.4; pilocarpine = 2.7 ± 1.2 mg cm-2 min-1), indicating different sudorific mechanisms. Both exercise-induced whole-body sweat rate (P < 0.05) and local sweat rate (P < 0.05) on control forearm correlated positively with pilocarpine-induced local sweat rate at rest. Assuming that exercise-induced sweating was a result of integrated physiological mechanisms, we suggest that local and whole-body sweat rate measured during graded exercise could be a better sweating index than pilocarpine.
Resumo:
The goal of the present study was to determine concentrations of E-selectin in both cerebrospinal fluid (CSF) and serum of patients with aneurysmal subarachnoid hemorrhage (SAH) and to evaluate the correlation between the clinical parameters and E-selectin levels. Both CSF and serum samples obtained from 12 patients with aneurysmal SAH and 8 patients with hydrocephalus (control group) without any other known central nervous system disease were assayed for E-selectin by quantitative enzyme-linked immunosorbent assay and the results were compared between the two groups. Mean levels of soluble forms of E-selectin within the first 3 days and on the 5th and 7th days of SAH were 4.0 ± 7.9, 2.8 ± 5.2, and 3.1 ± 4.9 ng/ml in the patient's CSF, and 33.7 ± 9.2, 35.1 ± 7.0, and 35.2 ± 8.7 ng/ml in serum, respectively. In contrast, mean E-selectin levels were 0.1 ± 0.2 ng/ml in CSF and 8.7 ± 5.0 ng/ml in serum of control patients. The difference between groups was statistically significant regarding both CSF and serum E-selectin levels (P < 0.05). Thus, we have demonstrated a marked increase of E-selectin concentration in both CSF and serum of patients with aneurysmal SAH compared with control and suggest that blocking the interaction between E-selectin and vascular endothelium may have a beneficial effect on vasospasms.
Resumo:
The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The Northeast region is the location of most cases of acute hepatitis A virus (HAV) in Brazil. In the present study, the genotypes of HAV strains from Pernambuco State, one of most populous states in the Northeast region, were characterized. Blood samples positive for anti-HAV IgM from 145 individuals (mean age = 29.1 years), collected during 2002 and 2003, were submitted to nested RT-PCR for amplification of the 5'non-translated region (5'NTR) and VP1/2A regions of the HAV genome. The VP1/2A and 5'NTR regions were amplified in 39 and 21% of the samples, respectively. Nucleotide sequencing was carried out in 46% of VP1/2A and in 53% of 5'NTR isolates. The identity in nucleotide sequence of the VP1/2A region ranged from 93.6 to 100.0%. Phylogenetic analysis of the VP1/2A sequences showed that 65% belong to sub-genotype IA and 35% to sub-genotype IB. Co-circulation of both sub-genotypes was observed in the two years studied. Distinct clusters of highly related sequences were observed in both sub-genotypes, suggesting endemic circulation of HAV strains in this area. In the 5'NTR isolates, 92.7-99.2% identity was observed and two isolates presented one deletion at position 413. Phylogenetic analysis showed that genotype IA strains cluster in the tree in the same way as genotype IB strains, but one IIIA isolate from Spain clusters with genotype IB strains. These results do not allow us to state that 5'NTR could be used to genotype HAV sequences. This is the first report of co-circulation of sub-genotypes IA and IB in this region, providing additional information about the molecular epidemiology of HAV strains in Brazil.
Resumo:
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Resumo:
There are few studies of ochratoxin A (OTA) genotoxicity in experimental animals and the results obtained with cell cultures are inconsistent, although the carcinogenic potential of OTA for the kidney of experimental animals has been well established. We studied the genotoxic potential of OTA in the kidney of adult female Wistar rats (5 in each group) treated intraperitoneally with OTA (0.5 mg kg body weight-1 day-1 for 7, 14, and 21 days) measuring DNA mobility on agarose gel stained with ethidium-bromide using standard alkaline single-cell gel electrophoresis (comet assay). Negative control animals were treated with solvent (Tris buffer, 1.0 mg/kg) and positive control animals were treated with methyl methanesulfonate (40 mg/kg) according to the same schedule. OTA concentrations in plasma and kidney homogenates in 7-, 14-, and 21-day treated animals were 4.86 ± 0.53, 7.52 ± 3.32, 7.85 ± 2.24 µg/mL, and 0.87 ± 0.09, 0.99 ± 0.06, 1.09 ± 0.15 µg/g, respectively. In all OTA-treated groups, the tail length, tail intensity, and tail moment in kidney tissue were significantly higher than in controls (P < 0.05). The tail length and tail moment were higher after 14 days than after 7 days of treatment (P < 0.05), and still higher after 21 days (P < 0.05). The highest tail intensity was observed in animals treated for 21 days, and it differed significantly from animals treated for 7 and 14 days (P < 0.05). OTA concentrations in plasma and kidney tissue increased steadily and OTA concentration in kidney tissue strongly correlated with tail intensity and tail moment values. These results confirm the genotoxic potential of OTA, and show that the severity of DNA lesions in kidney correlates with OTA concentration.
Resumo:
The dependence of sweat composition and acidity on sweating rate (SR) suggests that the lower SR in children compared to adults may be accompanied by a higher level of sweat lactate (Lac-) and ammonia (NH3) and a lower sweat pH. Four groups (15 girls, 18 boys, 8 women, 8 men) cycled in the heat (42ºC, 20% relative humidity) at 50% VO2max for two 20-min bouts with a 10-min rest before bout 1 and between bouts. Sweat was collected into plastic bags attached to the subject's lower back. During bout 1, sweat from girls and boys had higher Lac- concentrations (23.6 ± 1.2 and 21.2 ± 1.7 mM; P < 0.05) than sweat from women and men (18.2 ± 1.9 and 14.8 ± 1.6 mM, respectively), but Lac- was weakly associated with SR (P > 0.05; r = -0.27). Sweat Lac- concentration dropped during exercise bout 2, reaching similar levels among all groups (overall mean = 13.7 ± 0.4 mM). Children had a higher sweat NH3 than adults during bout 1 (girls = 4.2 ± 0.4, boys = 4.6 ± 0.6, women = 2.7 ± 0.2, and men = 3.0 ± 0.2 mM; P < 0.05). This difference persisted through bout 2 only in females. On average, children's sweat pH was lower than that of adults (mean ± SEM, girls = 5.4 ± 0.2, boys = 5.0 ± 0.1, women = 6.2 ± 0.5, and men = 6.2 ± 0.4 for bout 1, and girls = 5.4 ± 0.2, boys = 6.5 ± 0.5, women = 5.2 ± 0.2, and men = 6.9 ± 0.4 for bout 2). This may have favored NH3 transport from plasma to sweat as accounted for by a significant correlation between sweat NH3 and H+ (r = 0.56). Blood pH increased from rest (mean ± SEM; 7.3 ± 0.02) to the end of exercise (7.4 ± 0.01) without differences among groups. These results, however, are representative of sweat induced by moderate exercise in the absence of acidosis.
Resumo:
Valproate and carbamazepine (CAR) have been proposed as adjunct alternatives for the control of aggression in psychiatric patients, although no definite conclusions have been reached. We examined the effects of these drugs on food competition offensive aggression and other behaviors in high- and low-aggression food-restricted pigeons. These were divided into pairs containing previously ranked high-aggression (N = 10 pairs) and low-aggression females (N = 10 pairs). In Experiment 1, a pigeon in each pair of high- and low-aggression subjects was treated daily with an oral dose of sodium valproate (50 mg kg-1 mL saline-1) for 15 days. The other animal received the vehicle. On days 1, 7, and 15, food competition trials (10 min) were performed 60 min after treatment. In Experiment 2, one pigeon in each pair was treated daily with an oral dose of CAR (20 mg kg-1 mL saline-1) for 15 days. Each pair was submitted to a food competition trial on days 1, 7, and 15 of treatment. Valproate (15 days of treatment) selectively decreased the time spent in offensive aggression (control: 102.7 ± 9.3 vs valproate: 32.7 ± 9.2 s; P < 0.001, ANOVA-2-TAU) of high-aggression pigeons. This was also the case for 7 and 15 days of CAR treatment (control: 131.5 ± 8.9 vs CAR: 60.4 ± 5.3, P < 0.01, and control: 122.7 ± 7.1 vs CAR: 39.1 ± 5.2; P < 0.001, ANOVA-2-TAU, respectively). Thus, the two anticonvulsive drugs have a similar effect on food competition aggression in pigeons.
Resumo:
There is evidence showing a close relationship between diet and the occurrence of non-communicable chronic diseases. The present study assessed food consumption in a 2002/2004 cohort of young adults born in 1978/79 in Ribeirão Preto, SP, Brazil. The composition of the habitual diet consumed by a sample of 2063 individuals aged 23-25 years was analyzed using a validated semi-quantitative food frequency questionnaire based on studies of prevention of non-communicable chronic diseases. The Dietsys software was used for dietary calculations. In terms of WHO/2003 recommendations, there was a high mean daily consumption of energy from fat (consumption: 35.4%; recommendation: 15-30%), a low mean intake of energy from carbohydrates (47.5%; 55-75%) and a low mean consumption of total fibers (15.2 g; >25 g). Mean intake of energy from fatty acids (10%; <10%) and protein (15.6%; 10-15%) was within recommended limits. When compared to the recommendations of the food pyramid adapted to the Brazilian population, adequate intake was observed only regarding the meat group (consumption: 1.9 portions; recommended: 1-2). There was a low consumption of vegetables (2.9; 4-5), fruits (1.2; 3-5), breads (3.6; 6-9), and dairy products (1.7; 3), with excessive fat and sugar intake (5.7; 1-2). We conclude that the inadequate food consumption observed in this young population may be associated with the development of excess weight and may contribute to the triggering of non-communicable chronic diseases.
Resumo:
The role of gonadal hormones in induction and, particularly, maintenance/progression of rat thymic involution, which normally starts around puberty, was reassessed by examining the effects of peripubertal orchidectomy on thymic weight and morphometric parameters at different times up to the age of 10 months. Up to 6 months post-castration both thymic weight and cellularity in orchidectomized (Cx) rats were greater than in age-matched control rats, sham Cx (Sx). The increase in thymic cellularity reflected an increase in thymocyte proliferation rate (the proportion of proliferating cells was 18.6 ± 0.7% in 2-month-old Cx (N = 5) vs 13.4 ± 0.3% (N = 5) in age-matched Sx rats) followed by reduced sensitivity to apoptotic signals (apoptotic thymocytes were 9.8 ± 0.9% in 2-month-old Cx (N = 5) vs 15.5 ± 0.3% (N = 5) age-matched Sx rats). However, 9 months post-orchidectomy, neither thymic weight and cellularity nor any of the morphometric parameters analyzed differed between Cx and control rats. The reduction of thymic cellularity in Cx rats to control values may be related to increased sensitivity of their thymocytes to apoptotic signals in culture (72.6 ± 1.2% in 10-month-old vs 9.8 ± 0.9% in 2-month-old Cx rats) followed by reduced responsiveness to proliferative stimuli (14.1 ± 0.2% in 10-month-old vs 18.6 ± 0.7% in 2-month-old Cx rats). Thus, the study indicates that the effects of peripubertal orchidectomy on thymic weight and cellularity, as well as on the main morphometric indices, are long-lasting but not permanent, i.e., that removal of the testes can only postpone but not prevent age-related organ atrophy and consequently functional deterioration of the immune system.
Resumo:
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.