322 resultados para potential schistosome vector
Resumo:
We tested experimentally the effects of the presence of non-susceptible hosts on the infection with Trypanosoma cruzi of the vector Triatoma infestans. The experiment consisted in two treatments: with chickens, including two chickens (non-susceptible hosts) and two infected guinea pigs (susceptible hosts), and without chickens, including only two infected guinea pigs. The hosts were held unrestrained in individual metal cages inside a closed tulle chamber. A total of 200 uninfected T. infestans third instar nymphs were liberated in each replica, collected on day 14, and examined for infection and blood meal sources on day 32-36. The additional presence of chickens relative to infected guinea pigs: (a) significantly modified the spatial distribution of bugs; (b) increased significantly the likelihoods of having a detectable blood meal on any host and molting to the next instar; (c) did not affect the bugs' probability of death by predation; and (d) decreased significantly the overall percentage of T. infestans infected with T. cruzi. The bugs collected from inside or close to the guinea pigs' cages showed a higher infection rate (71-88%) than those collected from the chickens' cages (22-32%). Mixed blood meals on chickens and guinea pigs were detected in 12-21% of bugs. Although the presence of chickens would decrease the overall percentage of infected bugs in short term experiments, the high rate of host change of T. infestans would make this difference fade out if longer exposure times had been provided.
Role of Anopheles (Kerteszia) bellator as malaria vector in Southeastern Brazil (Diptera: Culicidae)
Resumo:
New research concerning Anopheles bellator in the southeast of the State of São Paulo, Brazil, are reported. Adult females of this mosquito showed remarkable endophily and endophagy which was even greater than An. cruzii. The epidemiological role of this anopheline as a malaria vector is discussed.
Resumo:
The control of the vector-borne transmission of Chagas disease in Brazil was organized as a national program in 1975, when two large entomological and sero-epidemiological surveys were conducted in the country in order to identify areas at highest risk of transmission and to guide inerventions regarding the chemical treatment of domestic vectors of the disease. The authors present the baseline data gathered through these studies and compare them with more recent data. The evaluation performed shows that the transmission by Triatoma infestans is virtually interrupted and that the transmission by other native species of triatominae from different regions of the country is possibly very low. It is emphasized the need to maintain permanent actions of entomological surveillance in order to prevent recurrent transmission.
Resumo:
As pyrethroids are presently the favored group of insecticides to control triatomines, we performed a series of bioassays to determine the intrinsic activity of some of the main compounds used in the control campaigns, against five of the main species of triatomines to be controlled. Comparing the insecticides it can be seen that lambdacyhalothrin is more effective than the other three pyrethroids, both considering the LD50 and 99 for all the three species with comparable results. On Triatoma infestans the LD50 of lambdacyhalothrin was followed by that of alfacypermethrin, cyfluthrin and deltamethrin. On Rhodnius prolixus the sequence, in decreasing order of activity, was lambdacyhalothrin, alfacypermethrin, deltamethrin and cyfluthrin. Some modifications can be seen when we compare the LD99, that has more to see to what happens in the field. T. brasiliensis showed to be as sensible to lambdacyhalothrin as T. infestans, the most susceptible for this product. By the other side T. sordida is the least susceptible considering the LD99 of this insecticide.
Resumo:
Trypanosoma cruzi and the majority of its insect vectors (Hemiptera, Reduviidae, Triatominae) are confined to the Americas. But while recent molecular studies indicate a relatively ancient origin for the parasite (~65 million years ago) there is increasing evidence that the blood-sucking triatomine vectors have evolved comparatively recently (<5 mya). This review examines the evidence for these ideas, and attempts to reconcile the apparent paradox by suggesting that marsupial opossums (Didelphidae) may have played a role, not just as original reservoir hosts, but also as original vectors of the parasite.
Resumo:
The vector competence of Culex quinquefasciatus from five localities in Brazil to Dirofilaria immitis was evaluated experimentally. Females from each locality were fed on an infected dog (~ 6 microfilariae/µl blood). A sample of blood fed mosquitoes were dissected approximately 1 h after blood meal. These results demonstrated that all had ingested microfilariae (mean, 4.8 to 24.6 microfilariae/mosquito). Fifteen days after the infected blood meal, the infection and infective rates were low in all populations of Cx. quinquefasciatus. The mean number of infective larvae detected in the head and proboscis of these mosquitoes was 1-1.5. The vector efficiency, the number of microfilariae ingested/number of infective larvae, was low for all populations of Cx. quinquefasciatus. However, the survival rate for all populations was high (range 50-75%). The survival rate of Aedes aegypti assayed simultaneously for comparison was low (24.7%), while the vector efficiency was much higher than for Cx. quinquefasciatus. These data suggest that the vector competence of all assayed populations of Cx. quinquefasciatus to D. immitis in Brazil is similar and that this species is a secondary vector due to its low susceptibility. Nevertheless, vector capacity may vary between populations due to differences in biting frequency on dogs that has been reported in Brazil.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Mansonella ozzardi, a relatively non pathogenic filarial parasite of man in Latin America, is transmitted by either ceratopogonid midges or simuliid blackflies. In the only known focus of the disease in north-western Argentina the vectors have never been incriminated. This study investigated the potential vectors of M. ozzardi in this area. The only anthropophilic species of these Diptera families biting man at the time of the investigation were Simulium exiguum, S. dinellii, Culicoides lahillei and C. paraensis. Using experimentally infected flies S. exiguum and both species of Culicoides allowed full development of microfilariae to the infective stage, with C. lahillei being a more competent host than S. exiguum. Based on these data, biting rates and natural infectivity rates it is probable that at the begininning of the wet season C. lahillei is the main vector of M. ozzardi and both C. paraensis and S. exiguum secondary vectors. Additionally, it was found that a single dose of ivermectin was ineffectual in eradicating M. ozzardi from infected individuals in this area.
Resumo:
Dirofilaria immitis (Leidy 1856), a nematode parasite, is the etiologic agent of canine heartworm disease and mosquitoes are essential intermediate hosts. Mosquito susceptibility to the worms differ with species, strains and also among individuals of the same strain. To evaluate the degree of susceptibility of Rio de Janeiro laboratory raised strain of Aedes aegypti, we fed mosquitoes on canine blood with different densities of microfilariae (mf). There was no significant difference in the rate of development among the three different densities of mf. Infective larvae were found in the head and proboscis of all mosquitoes provided bloodmeals with different densities of mf after the 11th day post-infection. The infection rate of mosquitoes after ingestion of blood containing 3,000 mf/ml, 5,000 mf/ml and 7,000 mf/ml were 55.3%, 66.7% and 100%, respectively. The vector efficiency indices ranged from 1.6 to 9.3. The finding of L3 stage larvae, high infection rates and vector efficiency indices suggest that Ae. aegypti, Rio de Janeiro laboratory strain, is a potential vector of D. immitis, although of low efficiency.