237 resultados para pH inhibition
Resumo:
To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6%, P < 0.05) and at 72 h (34.5 vs 93.5%, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.
Resumo:
In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.
Resumo:
Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg%] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg%], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.
Resumo:
We investigated the effect of propofol (Prop) administration (10 mg kg-1 h-1, intravenously) on lipopolysaccharide (LPS)-induced acute lung injury and its effect on cluster of differentiation (CD) 14 and Toll-like receptor (TLR) 4 expression in lung tissue of anesthetized, ventilated rats. Twenty-four male Wistar rats were randomly divided into three groups of 8 rats each: control, LPS, and LPS+Prop. Lung injury was assayed via blood gas analysis and lung histology, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were determined in bronchoalveolar lavage fluid using ELISA. Real-time polymerase chain reaction was used to detect CD14 and TLR4 mRNA levels, and CD14 and TLR4 protein expression was determined by Western blot. The pathological scores were 1.2 ± 0.9, 3.3 ± 1.1, and 1.9 ± 1.0 for the control, LPS, and LPS+Prop groups, respectively, with statistically significant differences between control and LPS groups (P < 0.05) and between LPS and LPS+Prop groups (P < 0.05). The administration of LPS resulted in a significant increase in TNF-α and IL-1β levels, 7- and 3.5-fold, respectively (P < 0.05), while treatment with propofol partially blunted the secretion of both cytokines (P < 0.05). CD14 and TLR4 mRNA levels were increased in the LPS group (1.48 ± 0.05 and 1.26 ± 0.03, respectively) compared to the control group (1.00 ± 0.20 and 1.00 ± 0.02, respectively; P < 0.05), while propofol treatment blunted this effect (1.16 ± 0.05 and 1.12 ± 0.05, respectively; P < 0.05). Both CD14 and TLR4 protein levels were elevated in the LPS group compared to the control group (P < 0.05), while propofol treatment partially decreased the expression of CD14 and TLR4 protein versus LPS alone (P < 0.05). Our study indicates that propofol prevents lung injury, most likely by inhibition of CD14 and TLR4 expression.
Resumo:
Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.
Resumo:
Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance.
Resumo:
We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT2R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT2R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca2+-free medium or the subsequent tonic constrictions induced by the addition of Ca2+ in the absence of agonists. Thus, the contractions induced by Ca2+ release from intracellular stores and Ca2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca2+. Neither levels of angiotensins nor of AT2R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca2+ entry.
Resumo:
p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.
Resumo:
Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.
Resumo:
The present study investigated the effect of silibinin, the principal potential anti-inflammatory flavonoid contained in silymarin, a mixture of flavonolignans extracted from Silybum marianum seeds, on palmitate-induced insulin resistance in C2C12 myotubes and its potential molecular mechanisms. Silibinin prevented the decrease of insulin-stimulated 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) uptake and the downregulation of glutamate transporter type 4 (GLUT4) translocation in C2C12 myotubes induced by palmitate. Meanwhile, silibinin suppressed the palmitate-induced decrease of insulin-stimulated Akt Ser473 phosphorylation, which was reversed by wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K). We also found that palmitate downregulated insulin-stimulated Tyr632 phosphorylation of insulin receptor substrate 1 (IRS-1) and up-regulated IRS-1 Ser307 phosphorylation. These effects were rebalanced by silibinin. Considering several serine/threonine kinases reported to phosphorylate IRS-1 at Ser307, treatment with silibinin downregulated the phosphorylation of both c-Jun N-terminal kinase (JNK) and nuclear factor-κB kinase β (IKKβ), which was increased by palmitate in C2C12 myotubes mediating inflammatory status, whereas the phosphorylation of PKC-θ was not significantly modulated by silibinin. Collectively, the results indicated that silibinin prevented inhibition of the IRS-1/PI3K/Akt pathway, thus ameliorating palmitate-induced insulin resistance in C2C12 myotubes.
Resumo:
Visando a aplicação industrial da caseína e de seus hidrolisados trípticos, foram estudados os efeitos da variação do pH e do tempo de hidrólise sobre suas características de solubilidade e propriedades emulsificantes. Testou-se os valores de pH de 3,0; 4,0; 5,0; 6,0; 7,0 e 8,0 e os tempos de hidrólise: 5, 10 15, 30 e 60min. Foram medidos a solubilidade, a capacidade emulsificante, o índice de atividade emulsificante, a estabilidade da emulsão, e calculdado o tamanho dos glóbulos de gordura. Os resultados obtidos para a caseína nativa indicaram que os melhores valores para estas propriedades funcionais foram encontrados em pH acima de 5,0. A hidrólise tríptica da caseína foi benéfica para sua solubilidade e capacidade emulsificante e prejudicou sua estabilidade, em todos os valores de pH e tempos de hidrólise, exceto no pH 5,0 com 5 min de reação. Por outro lado, este tratamento enzimático contribuiu para melhorar o índice de atividade emulsificante da caseína, entre valores de pH 3,0 e 5,0 e após 10 min de reação.
Resumo:
Sensory analysis was used to get an overall flavour description of a reaction mixtures containing 5'-IMP and Cysteine. Ribose/cysteine systems were used as reference systems. Results from triangle and aroma profiling show a clear correlation between the terms used and the volatile analysis described in literature for these model systems. For instance reactions at pH 3.0 and 4.5 for 5'-IMP/cysteine systems, which were described as "meaty" and "boiled meat" by panellists, presented, in the literature, the higher number of "meaty" compounds in volatile analysis (1, 7, 8, 20) .
Resumo:
No intuito de estudar o efeito do pH e da ação da tripsina sobre as propriedades emulsionantes da globina bovina, extraída pelo método da acetona acidificada, foram determinados neste trabalho, a capacidade emulsionante (EC), o índice de atividade emulsionante (EAI) e a estabilidade da emulsão (ES). Testaram-se os valores de pH de 3,0 a 8,0 e os tempos de hidrólise de 5,0 a 60 min. Os dados obtidos indicam que os maiores valores de EC e ES foram obtidos no pH 5,0 e 6,0, respectivamente, correspondente à faixa de alta solubilidade da proteína. Por outro lado, o EAI, além de apresentar um máximo no pH 3,0, foi igualmente elevado nos valores de pH 7,0 e 8,0, situados na zona onde a globina é praticamente insolúvel. A hidrólise tríptica, nas condições empregadas, contribuiu para melhorar a EC, em toda a faixa de pH estudada, enquanto que para o EAI somente foi benéfico em pH 4,0 e 5,0. No caso da ES, este tratamento enzimático não foi vantajoso, promovendo melhoras apenas no pH 7,0, onde a proteína é insolúvel, e somente após 60 min de hidrólise.
Resumo:
Visando a utilização do plasma bovino como agente funcional de alimentos, foram estudadas, na faixa de pH de 3,0 a 8,0, a solubilidade, a hidrofobicidade e a sua habilidade de formar e estabilizar emulsões. Para tal, foram determinados a capacidade emulsionante (EC), o índice de atividade emulsionante (EAI) e a estabilidade da emulsão (ES). O efeito da ação da tripsina sobre estas propriedades foi, também, verificado, tendo sido preparados cinco hidrolisados enzimáticos. Os resultados obtidos indicam que a hidrofobicidade e o EAI apresentaram um máximo em pH 3,0 e 7,0, respectivamente, enquanto que as outras propriedades praticamente não foram influenciadas pela variação de pH. A hidrólise tríptica provocou uma redução da solubilidade e da EC, não afetou o EAI e a ES, tendo contribuído para melhorar apenas a hidrofobicidade, em alguns tempos de reação.
Resumo:
Medidas reólogicas sob cisalhamento oscilatório foram realizadas em reômetro de tensão e deformação controladas com suspensões de concentrado de proteínas do soro do leite (WPC) a 10% (m/m) em água e a diferentes condições de pH (pH 4,0, 4,6 e 7,0). O processo de gelificação induzida pelo calor foi investigado, assim como as propriedades viscoelásticas dos géis formados a 80°C e daqueles formados após o decréscimo da temperatura a 20°C. Foi verificado que, em presença de teores significativos de sais, procedentes do próprio soro, a concentração usada nos experimentos foi suficiente para a formação de géis macroscópicos, e que o pH exerce papel importante na formação e na natureza estrutural dos géis.