248 resultados para gastrointestinal mucosa protective agent
Resumo:
The use of fungi in weeds control programs depends upon the conidia production in large scale. Therefore, this study aimed to evaluate liquid and solid culture media and the cultivation by biphasic system for the conidia production of Bipolaris euphorbiae Muchovej & Carvalho a specific pathogen of Euphorbia heterophylla. The liquid media were obtained from agro-industrial waste or by-products, and the solid media were prepared with mixtures of grains and grain derivatives. The liquid medium made with sugar cane molasses stood out from the others because it provided great sporulation (23 x 10(4) conidia mL-1 of medium), conidial viability (99.7%), and formation of mycelial fungal biomass (1.26 g 100 mL-1 of medium). On solid media conidial production was markedly higher than in liquid media, especially the medium composed by a blend of sorghum grain (40%) and soybean hulls (60%) where the fungus produced 2.3 x 10(7) conidia g-1 of medium. The cultivation of B. euphorbiae in biphasic system not promoted a significant increase in the production of conidia. The solid media were more effective for the mass production of fungus and mixtures of grains and derivatives were effective for increasing conidia production.
Resumo:
This study aimed to evaluate feed preference and control efficacy of grass carp (Ctenopharyngodon idella) on the aquatic macrophytes Ceratophyllum demersum, Egeria densa and Egeria najas. An experiment was carried out at mesocosms conditions with 2,000 liters capacity and water residence time of 2.8 days. C. demersum, E. densa e E. najas biomasses were offered individually with sixty g and coupled in similar quantities of 30 g of each species, evaluated during 81 days, envolving 6 treatments. (1 - C. demersum, 2 - E. najas, 3 -E. densa, 4 - C. demersum + E. najas, 5 - C. demersum + E. densa and 6 - E. najas + E. densa). When offered individually, E. najas and C. demersum presented the same predation rate by grass carp, which was higher than E. densa predation rate. When plants were tested in pairs, the order of feed preference was C. demersum > E. najas > E. densa. E. najas and C. demersum percentage control ranged from 73 to 83%. No relation between biomass consumption and grass carp body weight gain was observed, probably due to differences in nutritional quality among macrophyte species according to fish necessities. Therefore, it is concluded that the use of grass carp is one excellent technique to control submersed macrophytes in Brazil.
Resumo:
The presence of inhibitory nonadrenergic noncholinergic (NANC) intrinsic innervation of the circular muscle of the gastrointestinal sphincters of the South American (SA) opossum was investigated in vitro. Isolated circular muscle strips from the esophagogastric and ileocolonic junctions but not from the gastroduodenal (pylorus) region developed spontaneous tension. Tetrodotoxin (TTX, 1 µM) augmented the spontaneous tension only in the ileocolonic junction strips. Electrical field stimulation of esophagogastric and ileocolonic junction strips caused frequency-dependent responses consisting of a relaxation at lower frequencies (<1 Hz) and a biphasic response or contraction at higher frequencies. In the strips from the pyloric region electrical field stimulation abolished the spontaneous activity at lower frequencies and induced contractions at higher frequencies. The responses elicited by electrical field stimulation in the three sphincters were abolished by TTX (1 µM). Electrical field-induced contractions were reduced while relaxations were enhanced by atropine (1 µM). In the presence of atropine (1 µM) and guanethidine (3 µM), electrical field stimulation, nicotine and ATP induced frequency- or concentration-dependent relaxations of the three sphincters that were abolished by TTX (1 µM). Isoproterenol and sodium nitroprusside caused concentration-dependent relaxations which were TTX-resistant. These findings indicate that the sphincteric circular muscle of the SA opossum gastrointestinal tract is relaxed by the activation of intrinsic NANC nerves and therefore can be used as a model for the study of the mechanisms involved in these responses
Resumo:
The pathogenesis of protracted diarrhea is multifactorial. In developing countries, intestinal infectious processes seem to play an important role in triggering the syndrome. Thirty-four children aged 1 to 14 months, mean 6.5 months, with protracted diarrhea were studied clinically and in terms of small intestinal mucosal morphology. Mild, moderate or severe hypotrophy of the jejunal mucosa was detected in 82% of cases, and mucosal atrophy was observed in 12%. The intensity of the morphological changes of the jejunal mucosa correlated negatively with serum albumin levels. No correlation was detected between mucosal grading and duration of diarrhea or between mucosal grading and weight reported as percentile. After nutritional support was instituted, serial jejunal biopsies were obtained from 12 patients: five patients submitted to parenteral nutrition for 7 to 38 days, mean 17 days, and 7 patients receiving a hypoallergenic oral diet (semi-elemental formula, 3; chicken formula, 3; human milk, 1). In seven cases (58%) a progressive increase in villus height and a decrease in the number of inflammatory cells were noted. Recovery of the morphologic pattern was accompanied by clinical improvement in all patients
Resumo:
The attenuated vaccine against Schistosoma mansoni induces Th1-mediated protective immunity and we have sought to identify a role for IL-12 in this model. Elevated levels of IL-12 (p40 mRNA) were detected in the lymph nodes (LN) and the lungs of vaccinated mice, whilst treatment of vaccinated mice with anti-IL-12 antibodies decreased the ratio of IFNg:IL-4 secreted by in vitro-cultured LN cells. However, there was only marginal abrogation of the level of resistance in these mice. Soluble antigens from the lung-stage of the parasite (SLAP) appeared to be efficient stimulators of IFNg and IL-12 secretion. These antigens when used to immunise mice in conjunction with IL-12 as an adjuvant, elicited a polarised Th1 response with abundant IFNg secretion but no IL-4. This immunisation regime also induced significant protection against reinfection, whereas inoculation of mice with SLAP alone did not. The induction of a dominant Th1 response using SLAP + IL-12 probably operates via IFNg production by natural killer (NK) cells stimulated by IL-12, since in vivo ablation of NK cells using anti-NK1.1 antibody reduced CD4+-dependent IFNg production from cultured LN cells by over 97%. Nevertheless, in mice with a genetic disruption of the IFNg receptor, administration of SLAP + IL-12 induced levels of IFNg equal to those in wild-type mice, thus showing that in this model IL-12 can directly prime T cells independent of IFNg. Clearly, IL-12 has a critical role in protective immunity to schistosomes and it may aid the development of an effective vaccine against this disease
Resumo:
We evaluated the effects of fundectomy and pyloroplasty on the delay of gastric emptying (GE) and gastrointestinal (GI) transit of liquid due to blood volume (BV) expansion in awake rats. Male Wistar rats (N = 76, 180-250 g) were first submitted to fundectomy (N = 26), Heinecke-Mikulicz pyloroplasty (N = 25) or SHAM laparotomy (N = 25). After 6 days, the left external jugular vein was cannulated and the animals were fasted for 24 h with water ad libitum. The test meal was administered intragastrically (1.5 ml of a phenol red solution, 0.5 mg/ml in 5% glucose) to normovolemic control animals and to animals submitted to BV expansion (Ringer-bicarbonate, iv infusion, 1 ml/min, volume up to 5% body weight). BV expansion decreased GE and GI transit rates in SHAM laparotomized animals by 52 and 35.9% (P<0.05). Fundectomy increased GE and GI transit rates by 61.1 and 67.7% (P<0.05) and prevented the effect of expansion on GE but not on GI transit (13.9% reduction, P<0.05). Pyloroplasty also increased GE and GI transit rates by 33.9 and 44.8% (P<0.05) but did not prevent the effect of expansion on GE or GI transit (50.7 and 21.1% reduction, P<0.05). Subdiaphragmatic vagotomy blocked the effect of expansion on GE and GI transit in both SHAM laparotomized animals and animals submitted to pyloroplasty. In conclusion 1) the proximal stomach is involved in the GE delay due to BV expansion but is not essential for the establishment of a delay in GI transit, which suggests the activation of intestinal resistances, 2) pyloric modulation was not apparent, and 3) vagal pathways are involved
Resumo:
The present study evaluates the effect of blood volume expansion on the gastrointestinal transit of a charchoal meal (2.5 ml of an aqueous suspension consisting of 5% charcoal and 5% gum arabic) in awake male Wistar rats (200-270 g). On the day before the experiments, the rats were anesthetized with ether, submitted to left jugular vein cannulation and fasted with water ad libitum until 2 h before the gastrointestinal transit measurement. Blood volume expansion by iv infusion of 1 ml/min Ringer bicarbonate in volumes of 3, 4 or 5% body weight delayed gastrointestinal transit at 10 min after test meal administration by 21.3-26.7% (P<0.05), but no effect was observed after 1 or 2% body weight expansion. The effect of blood volume expansion (up to 5% body weight) on gastrointestinal transit lasted for at least 60 min (P<0.05). Mean arterial pressure increased transiently and central venous pressure increased and hematocrit decreased (P<0.05). Subdiaphragmatic vagotomy and yohimbine (3 mg/kg) prevented the delay caused by expansion on gastrointestinal transit, while atropine (0.5 mg/kg), L-NAME (2 mg/kg), hexamethonium (10 mg/kg), prazosin (1 mg/kg) or propranolol (2 mg/kg) were ineffective. These data show that blood volume expansion delays the gastrointestinal transit of a charcoal meal and that vagal and yohimbine-sensitive pathways appear to be involved in this phenomenon. The delay in gastrointestinal transit observed here, taken together with the modifications of gastrointestinal permeability to salt and water reported by others, may be part of the mechanisms involved in liquid excess management.
Resumo:
Gastrointestinal surgical procedures have the potential to disrupt motor activity in various organs of the gastrointestinal tract or, indeed, throughout the entire alimentary canal. Several of these motor effects have important clinical consequences and have also served to advance our understanding of the regulation of gastrointestinal motor activity. This review will focus, in particular, on the effects of surgery on the small intestine, and will attempt to emphasize the implications of these studies for our understanding of small intestinal motility, in general.
Resumo:
We studied the effect of complete spinal cord transection (SCT) on gastric emptying (GE) and on gastrointestinal (GI) and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65) weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution) was administered intragastrically (1.5 ml) and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05) by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05) by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05) by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05) by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.
Resumo:
Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.
Resumo:
Host resistance to Trypanosoma cruzi is dependent on both natural and acquired immune responses. During the acute phase of the infection the presence of IFN-g, TNF-a, IL-12 and GM-CSF has been closely associated with resistance, whereas TGF-ß and IL-10 have been associated with susceptibility. Several investigators have demonstrated that antibodies are responsible for the survival of susceptible animals in the initial phase of infection and for the maintenance of low levels of parasitemia in the chronic phase. However, how this occurs is not yet understood. Our results and other data in the literature support the hypothesis that the protective role of antibodies in the acute phase of infection is dependent mostly on their ability to induce removal of bloodstream trypomastigotes from the circulation in addition to other concomitant cell-mediated events.
Resumo:
Policosanol is a mixture of higher aliphatic alcohols purified from sugar cane wax, with cholesterol-lowering effects demonstrable in experimental models and in patients with type II hypercholesterolemia. The protective effects of policosanol on atherosclerotic lesions experimentally induced by lipofundin in rabbits and rats and spontaneously developed in stumptail monkeys have been described. The present study was conducted to determine whether policosanol administered orally to rabbits with exogenous hypercholesterolemia also protects against the development of atherosclerotic lesions. Male New Zealand rabbits weighing 1.5 to 2 kg were randomly divided into three experimental groups which received 25 or 200 mg/kg policosanol (N = 7) orally for 60 days with acacia gum as vehicle or acacia gum alone (control group, N = 9). All animals received a cholesterol-rich diet (0.5%) during the entire period. Control animals developed marked hypercholesterolemia, macroscopic lesions and arterial intimal thickening. Intima thickness was significantly less (32.5 ± 7 and 25.4 ± 4 µm) in hypercholesterolemic rabbits treated with policosanol than in controls (57.6 ± 9 µm). In most policosanol-treated animals, atherosclerotic lesions were not present, and in others, thickness of fatty streaks had less foam cell layers than in controls. We conclude that policosanol has a protective effect on the atherosclerotic lesions occurring in this experimental model.
Resumo:
We describe the ultrastructural abnormalities of the small bowel surface in 16 infants with persistent diarrhea. The age range of the patients was 2 to 10 months, mean 4.8 months. All patients had diarrhea lasting 14 or more days. Bacterial overgrowth of the colonic microflora in the jejunal secretion, at concentrations above 10(4) colonies/ml, was present in 11 (68.7%) patients. The stool culture was positive for an enteropathogenic agent in 8 (50.0%) patients: for EPEC O111 in 2, EPEC O119 in 1, EAEC in 1, and Shigella flexneri in 1; mixed infections due to EPEC O111 and EAEC in 1 patient, EPEC O119 and EAEC in 1 and EPEC O55, EPEC O111, EAEC and Shigella sonnei in 1. Morphological abnormalities in the small bowel mucosa were observed in all 16 patients, varying in intensity from moderate 9 (56.3%) to severe 7 (43.7%). The scanning electron microscopic study of small bowel biopsies from these subjects showed several surface abnormalities. At low magnification (100X) most of the villi showed mild to moderate stunting, but on several occasions there was subtotal villus atrophy. At higher magnification (7,500X) photomicrographs showed derangement of the enterocytes; on several occasions the cell borders were not clearly defined and very often microvilli were decreased in number and height; in some areas there was a total disappearance of the microvilli. In half of the patients a mucus-fibrinoid pseudomembrane was seen partially coating the enterocytes, a finding that provides additional information on the pathophysiology of persistent diarrhea.
Resumo:
There is evidence concerning the participation of reactive oxygen species in the etiology and physiopathology of human diseases, such as neurodegenerative disorders, inflammation, viral infections, autoimmune pathologies, and digestive system disorders such as gastrointestinal inflammation and gastric ulcer. The role of these reactive oxygen species in several diseases and the potential antioxidant protective effect of natural compounds on affected tissues are topics of high current interest. To consider a natural compound or a drug as an antioxidant substance it is necessary to investigate its antioxidant properties in vitro and then to evaluate its antioxidant functions in biological systems. In this review article, we shall consider the role of natural antioxidants derived from popular plants to reduce or prevent the oxidative stress in gastric ulcer induced by ethanol.
Resumo:
Parasympathetic dysfunction is an independent risk factor in patients with coronary artery disease; thus, cholinergic stimulation is a potential therapeutic measure that may be protective by acting on ventricular repolarization. The purpose of the present study was to determine the effects of pyridostigmine bromide (PYR), a reversible anticholinesterase agent, on the electrocardiographic variables, particularly QTc interval, in patients with stable coronary artery disease. In a randomized double-blind crossover placebo-controlled study, simultaneous 12-lead electrocardiographic tracings were obtained at rest from 10 patients with exercise-induced myocardial ischemia before and 2 h after the oral administration of 45 mg PYR or placebo. PYR increased the RR intervals (pre: 921 ± 27 ms vs post: 1127 ± 37 ms; P<0.01) and, in contrast with placebo, decreased the QTc interval (pre: 401 ± 3 ms vs post: 382 ± 3 ms; P<0.01). No other electrocardiographic variables were modified (PR segment, QT interval, QT and QTc dispersions). Cholinergic stimulation with PYR caused bradycardia and reduced the QTc interval without important side effects in patients with coronary disease. These effects, if confirmed in studies over longer periods of administration, may suggest a cardioprotection by cholinergic stimulation with PYR.