233 resultados para condition factors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Truck driver sleepiness is a primary cause of vehicle accidents. Several causes are associated with sleepiness in truck drivers. Obesity and metabolic syndrome (MetS) are associated with sleep disorders and with primary risk factors for cardiovascular diseases (CVD). We analyzed the relationship between these conditions and prevalence of sleepiness in truck drivers. Methods: We analyzed the major risk factors for CVD, anthropometric data and sleep disorders in 2228 male truck drivers from 148 road stops made by the Federal Highway Police from 2006 to 2011. Alcohol consumption, illicit drugs and overtime working hours were also analyzed. Sleepiness was assessed using the Epworth Sleepiness Scale. Results: Mean age was 43.1 ± 10.8 years. From 2006 to 2011, an increase in neck (p = 0.011) and abdominal circumference (p < 0.001), total cholesterol (p < 0.001), triglyceride plasma levels (p = 0.014), and sleepiness was observed (p < 0.001). In addition, a reduction in hypertension (39.6% to 25.9%, p < 0.001), alcohol consumption (32% to 23%, p = 0.033) and overtime hours (52.2% to 42.8%, p < 0.001) was found. Linear regression analysis showed that sleepiness correlated closely with body mass index (β = 0.19, Raj2 = 0.659, p = 0.031), abdominal circumference (β = 0.24, Raj2 = 0.826, p = 0.021), hypertension (β = -0.62, Raj2 = 0.901, p = 0.002), and triglycerides (β = 0.34, Raj2 = 0.936, p = 0.022). Linear multiple regression indicated that hypertension (p = 0.008) and abdominal circumference (p = 0.025) are independent variables for sleepiness. Conclusions: Increased prevalence of sleepiness was associated with major components of the MetS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Due to the importance of coronary artery disease (CAD), continuous investigation of the risk factors (RFs) is needed. Objective: To evaluate the prevalence of RFs for CAD in cities in Rio Grande do Sul State, and compare it with that reported in a similar study conducted in the same cities in 2002. Methods: Cross-sectional study on 1,056 healthy adults, investigating the prevalence and absolute and relative frequencies of the following RFs for CAD: obesity, systemic arterial hypertension (SAH), dyslipidemias, smoking, sedentary lifestyle, diabetes mellitus, and family history, as well as age and sex. Data was collected in 19 cities, host of the Offices of the Regional Coordinators of Health, as in the 2002 study. Results: Twenty-six percent of the sample consisted of older adults and 57% were women. The prevalence of sedentary lifestyle was 44%, history family 50%, smoking 23%, overweight/obesity 68%, dyslipidemia (high cholesterol levels) 43%, SAH 40%, and diabetes 11%. When compared to the 2002 study, the prevalence of active smoking and sedentary behavior decreased, whereas the prevalence of hypertension, dyslipidemia and obesity increased. Obesity is the most prevalent RF in women, and SAH the most prevalent in men. Conclusions: The prevalence of RFs for CAD in Rio Grande do Sul State remains high. Hypertension, obesity and dyslipidemia are still prevalent and require major prevention programs. Smoking and physical inactivity have decreased in the state, suggesting the efficacy of related campaigns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Preeclampsia has been associated with several risk factors and events. However, it still deserves further investigation, considering the multitude of related factors that affect different populations. Objective: To evaluate the maternal factors and adverse perinatal outcomes in a cohort of pregnant women with preeclampsia receiving care in the public health network of the city of Maceió. Methods: Prospective cohort study carried out in 2014 in the public health network of the city with a sample of pregnant women calculated based on a prevalence of preeclampsia of 17%, confidence level of 90%, power of 80%, and ratio of 1:1. We applied a questionnaire to collect socioeconomic, personal, and anthropometric data, and retrieved perinatal variables from medical records and certificates of live birth. The analysis was performed with Poisson regression and chi-square test considering p values < 0.05 as significant. Results: We evaluated 90 pregnant women with preeclampsia (PWP) and 90 pregnant women without preeclampsia (PWoP). A previous history of preeclampsia (prevalence ratio [PR] = 1.57, 95% confidence interval [95% CI] 1.47 - 1.67, p = 0.000) and black skin color (PR = 1.15, 95% CI 1.00 - 1.33, p = 0.040) were associated with the occurrence of preeclampsia. Among the newborns of PWP and PWoP, respectively, 12.5% and 13.1% (p = 0.907) were small for gestational age and 25.0% and 23.2% (p = 0.994) were large for gestational age. There was a predominance of cesarean delivery. Conclusion: Personal history of preeclampsia and black skin color were associated with the occurrence of preeclampsia. There was a high frequency of birth weight deviations and cesarean deliveries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Metabolic syndrome (MetS) is associated with a higher risk of all-cause mortality. High-sensitivity C-reactive protein (hsCRP) is a prototypic marker of inflammation usually increased in MetS. Women with MetS-related diseases present higher hsCRP levels than men with MetS-related diseases, suggesting sex differences in inflammatory markers. However, it is unclear whether serum hsCRP levels are already increased in men and/or women with MetS risk factors and without overt diseases or under pharmacological treatment. Objective: To determine the impact of the number of MetS risk factors on serum hsCRP levels in women and men. Methods One hundred and eighteen subjects (70 men and 48 women; 36 ± 1 years) were divided into four groups according to the number of MetS risk factors: healthy group (CT; no risk factors), MetS ≤ 2, MetS = 3, and MetS ≥ 4. Blood was drawn after 12 hours of fasting for measurement of biochemical variables and hsCRP levels, which were determined by immunoturbidimetric assay. Results: The groups with MetS risk factors presented higher serum hsCRP levels when compared with the CT group (p < 0.02). There were no differences in hsCRP levels among groups with MetS risk factors (p > 0.05). The best linear regression model to explain the association between MetS risk factors and hsCRP levels included waist circumference and HDL cholesterol (r = 0.40, p < 0.01). Women with MetS risk factors presented higher hsCRP levels when compared with men (psex < 0.01). Conclusions: Despite the absence of overt diseases and pharmacological treatment, subjects with MetS risk factors already presented increased hsCRP levels, which were significantly higher in women than men at similar conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Obstructive sleep apnea syndrome (OSAS) is a chronic, progressive disease with high morbidity and mortality. It is underdiagnosed, especially among women. Objective: To study the prevalence of high risk for OSAS globally and for the Berlin Questionnaire (BQ) categories, and to evaluate the reliability of the BQ use in the population studied. Methods: Observational, cross-sectional study with individuals from the Niterói Family Doctor Program, randomly selected, aged between 45 and 99 years. The visits occurred between August/2011 and December/2012. Variables associated with each BQ category and with high risk for OSAS (global) were included in logistic regression models (p < 0.05). Results: Of the total (616), 403 individuals (65.4%) reported snoring. The prevalence of high risk for OSA was 42.4%, being 49.7% for category I, 10.2% for category II and 77.6% for category III. Conclusion: BQ showed an acceptable reliability after excluding the questions Has anyone noticed that you stop breathing during your sleep? and Have you ever dozed off or fallen asleep while driving?. This should be tested in further studies with samples mostly comprised of women and low educational level individuals. Given the burden of OSAS-related diseases and risks, studies should be conducted to validate new tools and to adapt BQ to better screen OSAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Transcatheter aortic valve implantation has become an option for high-surgical-risk patients with aortic valve disease. Objective: To evaluate the in-hospital and one-year follow-up outcomes of transcatheter aortic valve implantation. Methods: Prospective cohort study of transcatheter aortic valve implantation cases from July 2009 to February 2015. Analysis of clinical and procedural variables, correlating them with in-hospital and one-year mortality. Results: A total of 136 patients with a mean age of 83 years (80-87) underwent heart valve implantation; of these, 49% were women, 131 (96.3%) had aortic stenosis, one (0.7%) had aortic regurgitation and four (2.9%) had prosthetic valve dysfunction. NYHA functional class was III or IV in 129 cases (94.8%). The baseline orifice area was 0.67 ± 0.17 cm2 and the mean left ventricular-aortic pressure gradient was 47.3±18.2 mmHg, with an STS score of 9.3% (4.8%-22.3%). The prostheses implanted were self-expanding in 97% of cases. Perioperative mortality was 1.5%; 30-day mortality, 5.9%; in-hospital mortality, 8.1%; and one-year mortality, 15.5%. Blood transfusion (relative risk of 54; p = 0.0003) and pulmonary arterial hypertension (relative risk of 5.3; p = 0.036) were predictive of in-hospital mortality. Peak C-reactive protein (relative risk of 1.8; p = 0.013) and blood transfusion (relative risk of 8.3; p = 0.0009) were predictive of 1-year mortality. At 30 days, 97% of patients were in NYHA functional class I/II; at one year, this figure reached 96%. Conclusion: Transcatheter aortic valve implantation was performed with a high success rate and low mortality. Blood transfusion was associated with higher in-hospital and one-year mortality. Peak C-reactive protein was associated with one-year mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 - Colour, by itself, does not constitute a solid ground for judging of the age of a brandy because the more or less pronounced colour it acquires through aging can also be obtained by the addition of oack essence to newly distilled brandy. 2 - Urder the same conditions, colour intensity of a brandy wiU depend upon the nature of the wood and the condition of the storage. 3 - In accordance with the experimental results obtained by the present writers it rests no doubt that fermentation facility ferment resistence, produce and quality of the brendy all are factors depending upon the variety of the sugar cane. In addition, the authors presume that the variety of sugar cane has also influence upon the alteration of composition of the brandy submitted to aging. 4 - All aging phenomena of the brandy are accompanied by volume decreasing, what happens in a slow and continuous manner depending upon storage and environment conditions 5 - During brandy aging the alcoholic degree is greatly af- fected by evaporation, increasing or decreasing in accordance to the hygrometric state of the air and the teriperature in the place where the tuns are stored. 6 - The specific weight of the brandy is inversely proportio- nal to its alcoholic degree, but directly proportional to the extracts since the latter indicates the amount of dissolved residues. 7 - Brandy which shows high specific weight together with high alcoholic degree cannot be considered as aged. It may, however, be takens for brandy artificially coloved in order to conceal its actual age. 8 - The amount of extracts increases with aging, since it is the result of the solvent action of the brandy upon the soluble extractive substances of the wood. Notwithstanding that the extract, considered alone, has no value in determining the age of a brandy, since nothing easier is ohan to nake it change artificially. 9 -During aging the brandy get acidity in physiological as well as in physical way, but never by the action of microorganisms. 10 - The estturs produced during aging by the action of acids upon alcohols are the mean factors of the savour (bouquet) of a brandy and therefore every thing shall be done tor fhr estherification of a preserved brandy being not limited. 11 - Aeration increases esther formation, reduces the aging- time and turn better the taste qualities of the brandy. 12 - Due to the great proportion of high alcohols ordinarily found in the brandy, their analytical discrimination will be greatly important. 13 - The high alcohols are not responsable for the disastrous consequences of the alcoholism, but the high percentage of uthyl alcohol present in the brandy. 14 - The aldehydes appear always in high rate in the brazilian brandys in consequence of some intermediary products of the oxydation of the alcohols being left in the brandys during aging. 15 - The age has little or no influence on the quantity of phurphurol present in a brandy whose amount varies greatly the manner in which the wines to be distilled are treated. Wines centrifugalized or filtered before distillation always give rise to brandys poorer in phurphurol as compared with those distilled without these treatments. 16 - Though greatly variable, brandys of good qualities generally show a high residues coefficient, never under 200 mmg 17 - Lusson - Rocques oxydation coefficient cannot be indis- criminately applied to any brandy class, being, on the contrary, specifically destined to cognacs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory experiment was carried out to study the effects of chemical and physical characteristics of the soil on the phosphate fixing capacity. One hundred samples collected from various localities were at first characterized chemically and their particlesize distribution determined. They were then tested as to their phosphate fixing capacities. The results obtained were statistically analysed by means of both simple linear and multiple correlation. The following conclusions could be drawn: 1. simple linear regression analysis indicated that % C, exchangeable Al+3, CEC, % clay, pH and % sand were the soil characteristics which significantly affected phosphate fixing capacity of São Paulo State soils; 2. multiple linear regression analysis indicated that % C, exchangeable Mg(+2)9 exchangeable- Al+3 and % clay were the soil characteristics which significantly affected the phosphate fixing capacity of São Paulo State soils; 3. the phosphate phonomena fixing as they occur in the soils of the São Paulo State can be best described by the following equation: Y = -2,266 - 3,484 + 3,514 + 5,559 + 1,005 %C Mg+2 Al+3 % clay exchangeable exchangeable 4. phosphate fixation in the soil is affected by the combined effects of both soil chemical and physical characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present contribution aims at evaluating the carapace width vs. humid weight relationship and the condition factor of Ucides cordatus (Linnaeus, 1763), in the mangrove forests of the Ariquindá and Mamucabas rivers, state of Pernambuco, Brazil. These two close areas present similar characteristics of vegetation and substrate, but exhibit different degrees of environmental conservation: the Ariquindá River is the preserved area, considered one of the last non-polluted of Pernambuco, while the Mamucabas River suffers impacts from damming, deforestation and deposition of waste. A total of 1,298 individuals of U. cordatus were collected. Males were larger and heavier than females, what is commonly observed in Brachyura. Ucides cordatus showed allometric negative growth (p < 0.05), which is probably related to the dilatation that this species develops in the lateral of the carapace, which stores six pairs of gills. The values of b were within the limit established for aquatic organisms. Despite of the condition factor being considered an important feature to confirm the reproductive period, since it varies with cyclic activities, in the present study it was not correlated to the abundance of ovigerous females. However, it was considered a good parameter to evaluate environmental impacts, being significantly lower at the impacted area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condition factor is a parameter which acts as a general indicator of the "well-being" of a species, and it can be obtained through the analysis of width vs. weight relationships. The present work aims to investigate size vs. weight relationship and the condition factor of the crab Goniopsis cruentata (Latreille, 1803). The study area was the Mundaú/Manguaba estuarine complex, Maceió, state of Alagoas, Northeast Brazil. Samplings were monthly accomplished from August 2007 to July 2008. A total of 626 individuals were analyzed, being 309 males and 317 females. Males were larger and heavier than females, what is expected in many brachyuran. The growth was positive allometric to both males (b = 3.42) and females (b = 3.30), not obeying the "cube law". The condition factor of female was higher than that of male crabs, probably due to the gonad weight of females. It also varied seasonally for both sexes, being higher in the autumn and winter in males, and in the autumn and spring in females, and related to the molt and period of spawning intensification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the effects of environmental factors on abundance, species richness, and functional group richness of Leptophlebiidae in 16 sampling points along four Cerrado streams. Across three periods of 2005, we collected 5,492 larvae from 14 species in stream bed substrate. These species belong to three functional feeding groups: scrapers, filtering collectors and shredders. The abundance and species richness were not affected by water quality, but habitat quality related to presence of riparian vegetation had positive effects on the abundance of shredders. Our results add important information on the natural history of the species and functional groups of aquatic insects and also provide relevant data for the monitoring and conservation of streams in the Brazilian Cerrado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Male gladiator frogs of Hypsiboas Wagler, 1830 build nests on available substrate surrounding ponds and streams where female spawn eggs during the breeding period. Although gladiator frogs seem to show plasticity in the way they construct their nests, there is no study reporting if these species present preferences about microhabitat conditions for nest-building (mainly under subtropical climate). Predation pressure and environmental conditions have been considered major processes shaping the great diversity of reproductive strategies performed by amphibians, but microhabitat conditions should explain where to build a nest as well as how nest looks. This study aimed to test nest site selection for nest-building by Hypsiboas faber(Wied-Neuwied, 1821), determining which factors are related to nest site selection and nest features. The survey was conducted at margins of two permanent ponds in Southern Brazil. Habitat factors were evaluated in 18 plots with nest and 18 plots in the surrounding without nest (control), describing vegetation structure and heterogeneity, and substrate characteristics. Water temperature was measured inside the nest and in its adjacency. Nest features assessed were area, depth and temperature. Habitat characteristics differed between plots with and without nest. Microhabitat selected for nest-building was characterized by great vegetation cover and height, as well as shallower water and lower cover of organic matter in suspension than in plots without nest. Differences between temperature inside nest and in its adjacency were not observed. No relationship between nest features and habitat descriptors was evidenced. Results revealed that Hypsiboas faber does not build nests anywhere. Males seem to prefer more protected habitats, probably avoiding predation, invasion of conspecific males and inclement weather. Lack of differences between temperature inside- and outside-nest suggest that nest do not improve this condition for eggs and tadpole development. Nest architecture was not related to habitat characteristics, which may be determined by other factors, as nest checking by females before amplexus. Nest site selection should increase offspring survival as well the breeding success of Hypsiboas faber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of blood lipase has been proposed by SEABRA as a method for detecting predisposition to initial or subsequent stages of tuberculosis; normal subjects having high titers (8-12 units), tuberculous patients low ones (5-7), falling to zero in advanced stages of the disease. An assay of the method has been made by the AA. in sera of 238 non tuberculous subjects (419 tests) and 207 tuberculous ones (456 tests) following the technical procedures described by SEABRA. All of them had their Roentgenographies taken at the same day of blood collection. Factors interfering with blood lipase values in tuberculosis are discussed. A relationship between the course of the disease and the serum lipase could not be confirmed. High and low values were found in initial as well as in advanced cases. Our results are in agreement with those recorded in the literature (Figs. I and II). It seems that the general condition, rather than pulmonary lesions are responsible for the blood lipase values. There was no direct relationship between blood lipase titer and severity of pulmonary tuberculosis; however the data presented in this paper do not agree with such correlation, stated by SEABRA, FERNANDES and VICENTE.