279 resultados para chemical signals
Resumo:
Denervation of the colon is protective against the colon cancer; however, the mechanisms involved are unknown. We tested the hypothesis that the denervated colonic mucosa could be less responsive to the action of the chemical carcinogen dimethylhydrazine (DMH). Three groups of 32 male Wistar rats were treated as follows: group 1 (G1) had the colon denervated with 0.3 mL 1.5 mM benzyldimethyltetradecylammonium (benzalkonium chloride, BAC); G2 received a single ip injection of 125 mg/kg DMH; G3 was treated with BAC + the same dose and route of DMH. A control group (Sham, N = 32) did not receive any treatment. Each group was subdivided into four groups according to the sacrifice time (1, 2, 6, and 12 weeks after DMH). Crypt fission index, ß-catenin accumulated crypts, aberrant crypt foci, and cell proliferation were evaluated and analyzed by ANOVA and the Student t-test. G3 animals presented a small number of aberrant crypt foci and low crypt fission index compared to G2 animals after 2 and 12 weeks, respectively. From the second week on, the index of ß-catenin crypt in G3 animals increased slower than in G2 animals. From the 12th week on, G2 animals presented a significant increase in cell proliferation when compared to the other groups. Colonic denervation plays an anticarcinogenic role from early stages of colon cancer development. This finding can be of importance for the study of the role of the enteric nervous system in the carcinogenic process.
Resumo:
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
Resumo:
Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.
Resumo:
Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.
Resumo:
The purpose of this study was to determine through carotenoid analysis, the provitamin A value of two carrots (Daucus carota L.) cultivars (Brasilia and Beta3), leaves and roots, raw and submitted to two ways of cooking: boiling and microwave. Proximate analysis results are also presented for a better characterization of these vegetables (moisture, ash, lipids, proteins, fiber and total carbohydrates). The main carotenoids sources of provitamin A in this vegetable, both in leaves or roots was β-carotene and α-carotene. α-carotene shows half of the provitamin A value of β-carotene. Samples of the Brasilia cultivar presented the better provitamin A value both for leaves and roots. The results for raw samples of the Brasilia cultivar were 464.48 RE/100g for leaves and 606.42 RE/100g for roots. There were no significant losses of provitamin A with the boiling or microwave cooking methods used.
Resumo:
Protein characterization and results of proximate composition and mineral analyses of fruit kernels of bocaiuva, Acrocomia aculeata (Jacq.) Lodd., are reported. The kernels presented high contents of oil (51.7%), protein (17.6%) and fiber (15.8%). The seeds´ soluble proteins were isolated according to their solubility. The main separated proteins were globulins (53.5%) and glutelins (40.0%). Moreover, the presence of low molecular mass proteases in these two fractions was shown by the SDS-PAGE method. The assays of protease-inhibitory and hemagglutinating activities showed that bocaiuva´s protein fractions were not resistant to trypsin or chymotrypsin activities and that both had low lectin content. The globulin in vitro digestibility assay resembled a casein standard. Neither globulin nor glutelin enzymatic hydrolyses increased significantly (p < 0.05) after heat treatment. Threonine and lysine are the most limiting amino acids, respectively from two major protein fractions of the bocaiuva kernel, globulin (47.1% amino acid score) and glutelin (49.5% amino acid score), in terms of the theoretical profiles for children in the age range of 2 to 5 years recommended by the FAO/WHO. Bocaiuva kernels are found to be rich in calcium, phosphorus and manganese compared to some fruit nuts such as cashew and coconut.
Resumo:
Mature fruit from the yellow mombin (Spondias mombin) was monitored for its respiration activity. Mature green fruit from the yellow mombin was stored in closed glass chambers and the concentration of oxygen and carbon dioxide at the end of a six hour respiration period was determined. At the same interval of time, the lid of the chamber was opened for air renewal. The increase in carbon dioxide and decrease in oxygen concentration demonstrated that the fruit was climacteric. The maximum liberation of CO2 54.2 mL Kg-1 h-1 and maximum absorption of O2 49.0 mL Kg-1 h-1 occurred 186 hours after the harvest which, obviously, represented the optimum fruit quality after the senescence process started. The respiratory quotient of fruit at a climacteric maximum was 1.11 representing the oxidation of carbohydrates. Total soluble solids increased from 9.1 °Brix (initial) to 13.7 °Brix (climacteric maximum) during maturation, while the total number of acids in the fruit decreased during maturation i.e. from 1.55% initially to 1.40% at pre-climacteric, 1.0% at climacteric maximum and 0.8% in the post-climacteric stage. A similar behaviour was observed in the case of ascorbic acid. There was a continuous decrease in chlorophyll and a continuous increase in the carotenoid content of fruit during maturation.
Resumo:
Origanum vulgare L. (oregano), Lamiaceae, essential oil has a variety of biological properties and its antimicrobial activity has received a renewed interest for use in food conservation. The aim of this study was to evaluate the interference of heating on the antimicrobial activity and chemical composition of O. vulgare essential oil. The antimicrobial activity of the essential oil kept at room temperature and exposed to different heating temperatures (60, 80, 100 and 120 °C during 1 hour) was evaluated by observing antimicrobial effectiveness at absolute concentration and determining MIC values by the solid medium diffusion procedure. The essential oil chemical composition analysis was performed by GC-MS. O. vulgare essential oil showed interesting antimicrobial activity on all assayed microbial strains (Candida albicans, C.krusei, C. tropicalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, Salmonella enterica, Serratia marcencens), noted by large growth inhibition zones (30-42 mm). Heating treatment showed no significant interference (p < 0.05) on the essential oil antimicrobial activity, noted by the development of microbial growth inhibition zones with similar or close diameters when evaluating the essential oil kept at room temperature and after exposure to different thermal treatments. MIC values oscillated between 10and 40 µL.mL-1 (20µL.mL-1 for most strains). However, no significant difference (p < 0.05) was noted among the MIC values found for the essential oil aliquots exposed to different temperatures. Moreover, heating did not significantly (p < 0.05) affect the chemical composition of O. vulgare essential oil. Monoterpenes, terpenic compounds and sesquiterpenes were found in the essential oil, with carvacrol (68.06-70.27%) and p-cymene (12.85-15.81%) being the compounds found in the highest amounts. These results showed the thermal stability and intense antimicrobial properties of O. vulgare essential oil and support its possible concomitant use with heating temperatures in order to reach microbial safety in foods.
Resumo:
Five blackberry cultivars (Rubus sp.) were evaluated for antioxidant capacity, bioactive compounds and composition. Ascorbic acid levels, consisting of dehydro-ascorbic acid, ranged from 9.8 to 21.4 mg.100 g-1 fresh weight. Cyanidin (66 to 80% of total flavonoids), epicatechin, quercetin and traces of kaempferol were the main flavonoids found in all cultivars. The five cultivars presented high antioxidant capacity in the β-carotene/linoleic acid system, with inhibition similar to the synthetic antioxidant BHT, at a 50 µM concentration. Caingangue cultivar presented high vitamin C and total phenolics content, while Guarani had the highest cyanidin, total anthocyanin and total flavonoids levels and also the highest antioxidant capacity. These cultivars also presented good TSS/TA ratios. From the data, at a quantitative level, blackberry can be considered a good source of bioactive compounds, as well as potentially beneficial to human health.
Resumo:
Marinated fish are fish products preserved by the combined action of salt and organic acids. The objective of this work was to analyze the variations in the chemical compounds of anchovy fillets that give them sensorial characteristics during the marinating process of Engraulis anchoita. The protein content decreased slightly and the TVB-N level decreased significantly in both the brining and marinating stages. In the marinating stage an increase in the total free aminoacids was observed. The NBV level in the brining and marinating solutions increased during these stages due to the solubilization of the non-protein nitrogenous compounds and the degradation of some protein compounds.The decrease of the contents of protein and TVB-N, and the increase of the acidity and the free aminoacids content during the marinating process give the marinated fillets the characteristic texture and aroma.
Resumo:
Brazil is the second soybean (Glycine max L. Merrill) producer and exporter in the world. In 2005, soybean cultivated in the southeastern region of the country suffered drought stress imposed by adverse high temperatures and low humidity during its reproductive stage. Little information is available regarding the effect of drought stress on the quality of grains. In this study chemical and biochemical characteristics of five soybean samples belonging to three different cultivars grown under drought stress were evaluated. The samples did not meet standards for marketing and contained high amounts of green seeds. Grains were analyzed for appearance, 100 seed weight, humidity, water activity, proteins, lipids, lipoxygenase 1 activity, peroxides, and pigment contents after harvest and after 20 months of storage at room temperature. Acidity was measured also after 30 months of storage. The values of water activity and humidity were 0.6-0.7 and 8.7-11.9%, respectively, and they did not change during storage time, but there was an increase in acidity, which alludes to lipase activity. The activity of lipoxygenase 1 was greatly affected. Immediately after harvest, the green pigments were represented mainly by pheophytin a, followed by pheophytin b, small quantities of chlorophyll b and chlorophyll a, and traces of other chlorophyll derivatives. After 20 months of storage almost all green pigments had disappeared. Drought stress probably enhanced membrane permeability, which led to a lower pH and promoted transformation of chlorophylls to pheophytins.
Resumo:
In this work, the essential oils of S. officinalis, S. sclarea, S. lavandulifolia and S. triloba were chemically analyzed by gas chromatography coupled to a mass spectrometry detector (GC/MSD), and their antimicrobial activity was tested against 10 microorganisms using the disk diffusion method and the Minimum Inhibitory Concentration (MIC) technique. The following major compounds were identified in the essential oils: α - and β-thujone, camphor and 1,8-cineole, except in S. sclarea, where linalool, linalyl acetate and α-terpineol were the major constituents. The antimicrobial activity showed significant differences (p < 0.05) only when obtained by the MIC method. Gram-positive microorganisms presented larger sensitivity for the essential oils. The lowest MIC was observed when Staphylococcus aureus was exposed to 2.31 mg.mL-1 of S. lavandulifolia essential oil, while the highest MIC value was obtained when Shigella flexneri was exposed to 9.25 mg.mL-1 of the same essential oil, thus demonstrating that this essential oil may be effective as a bacteriostatic agent against Gram-positive microorganisms.
Resumo:
In order to assure that the use of cerrado fruits occur in a sustainable way, studies to investigate their characteristics are extremely relevant. In this context, the present study aims to describe some chemical parameters of pequi fruits picked in three municipalities in southwestern Goiás State (Jataí, Rio Verde, and Serranópolis). In each city, two populations of pequi trees - pequizeiros, denominated areas, were selected. In each area, eight trees were selected for the fruit to be picked. The contents of phosphorus, potassium, calcium, magnesium, nitrogen, zinc, and ether extract were determined in the samples. The results demonstrate differences between the chemical characteristics studied for the fruits picked in different areas, which does not seem to vary in a significant way. Comparing the contents obtained in the present study with those required as human daily supply, further studies are recommended aiming at using the pequi fruit as a complementary alternative source of magnesium, manganese, and copper.
Resumo:
"Panela" is a natural sweetener obtained by concentrating sugar cane juice and handmade in small factories. In the study carried out, the physical and chemical properties of two commercial brands of artisanal granulated panelas and of one made on an experimental level were determined. Three lots of each sample were analyzed. The parameters measured were moisture, a w, protein, ash, minerals, reducing sugars, sucrose, pH, color (L, a and b), insoluble solids (IS), transmittance a 720 nm and filterability. In addition, a qualitative test to detect sulphur dioxide was performed. The parameters with higher variability were moisture (1.66-4.36 g.100 g-1), a w (0.51-0.69), reducing sugars (4.58-11.48 g.100 g-1), pH (5.58-6.90), and color. Potassium was the most abundant mineral (229.52-1027.18 mg.100 g-1). An inverse relationship between IS and transmittance at 720 nm (R² = 0.96) and a direct relationship between IS and ash (R² = 0.94) were found. The sulphur dioxide test was negative for all the samples.
Resumo:
Conjugated fatty acid (CFA) is the general term to describe the positional and geometric isomers of polyunsaturated fatty acids with conjugated double bonds. The CFAs of linoleic acid (CLAs) are found naturally in foods derived from ruminant animals, meat, or dairy products. The CFAs of α-linolenic acid (CLNAs) are found exclusively in various types of seed oils of plants. There are many investigations to assess the effects to health from CFAs consumption, which have been associated with physiological processes that are involved with non transmissible chronic diseases such as cancer, atherosclerosis, inflammation, and obesity. Conclusive studies about the CFAs effects in the body are still scarce and further research about their participation in physiological processes are necessary. This review aimed to discuss the influence of conjugated fatty acids on physiological processes in animal organism.