322 resultados para Teoria do custo de transação
Resumo:
This work describes the construction of a home-made low-cost reactor, using easily available materials, capable of destroying efficiently dissolved organic matter. Just 30 minutes of irradiation were sufficient to destroy more than 99% of the humic acids present in a solution of 4 mg C L-1. Copper speciation was evaluated in natural waters of different salinities to test the reactor's efficiency in destroying organically complexed metal species. The effect of the organic matter concentration, salinity, dissolved oxygen and temperature in the photo-oxidation process is discussed.
Resumo:
The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.
Resumo:
The fundaments of the modern Density Functional Theory (DFT), its basic theorems, principles and methodology are presented. This review also discuss important and widely used concepts in chemistry but that had not been precisely defined until the development of the DFT. These concepts were proposed and used from an empirical base, but now their precise definition are well established in the DFT formalism. Concepts such as chemical potential (electronegativity), hardness, softness and Fukui function are presented and their consequences to the understanding of chemical reactivity are discussed.
Resumo:
Probably one of the most difficult and challenging aspects of measuring trace metals in natural waters is to avoid contamination during sampling, manipulation and analysis. This work discusses how to avoid contamination using simple procedures, and considers alternative methods to purify deionised water and low grade reagents to enable accurate determination of trace metals in natural waters in a common laboratory. Measurements were performed by cathodic stripping voltammetry and copper was used as a model metal to test the procedures. It was possible to evaluate copper speciation in natural waters even when total dissolved copper concentration was as low as 1.5 nmol L-1. The methods' accuracy was confirmed by analysis of certified seawater.
Resumo:
A simple and low cost device (ca. US$ 150) that comprises two photodiodes fixed in lab-made Perspex flow cell is proposed for chemiluminescence measurements. The characteristics of the device (large observation window and reduced thickness) allow maximizing the amount of the emitted radiation detected. A sensitivity improvement of ca. 50 % was observed by employing two photodiodes for signal measurements. The performance of the device was assessed by the oxidation of luminol by hydrogen peroxide, yielding a linear response within the range of 2.50 to 500 µmol L-1 H2O2. The detection limit was estimated as 0.8 µmol L-1 hydrogen peroxide which is comparable with those obtained by using equipments based on photomultipliers.
Resumo:
Thermal baths to decrease ambient temperature are an indispensable tool for most research and teaching laboratories, especially those in tropical or equatorial regions. A simple and inexpensive thermal bath has been developed based on a scratched compressor. It has three possible setups for cooling: sample immersed into the bath, sample flowing through the bath, and cooling liquid flowing in a jacket around the sample. It has been tested for 40 months. The temperature ranges from room temperature to 0 °C, when using water. The repeatability is better than 3% and the precision varies from 0.5% to 2%.
Resumo:
In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.
Resumo:
Silica gel is widely used as adsorbent for isolating and purifying natural compounds. Intensive use and high cost make this process expensive and generate solid residues contaminated with many different organic compounds. In the present work a simple method for recycling silica was investigated, by using Advanced Oxidative Processes. Silica gel was treated with H2O2/solar light and compared with a sample treated by conventional methods (high temperature and oxidation with KMnO4). High temperature treatment changes the structure of the silica and, consequently, the separation efficiency. Oxidation by using KMnO4 requires multiple steps and produces residues, including manganese and oxalic acid. The method using H2O2/solar light to recuperate silica gel does not modify its separation efficiency and is less expensive than the traditional methods. Additionally, HPLC and GC-MS analysis indicate that H2O2/solar light eliminates all residues of the silica gel.
Resumo:
A digital multimeter (~U$ 240.00 on the national market) connected to a microcomputer by a RS-232 serial interface is proposed for data acquisition in equipment with analog output. Data are measured at the rate of 2 points per second and stored in text files by the software that accompanies the device, running in a Windows environment. The performance of the multimeter was verified by monitoring the transient signals generated in flow injection systems associated with fluorimetric, spectrophotometric and flame photometric detection. In addition, the performance of the proposed device was similar to that attained by employing an interface card with a 12-bit analog-to-digital converter for acquisition of the signals generated by a capillary electrophoresis equipment with oscillometric detection.
Resumo:
Calculations based on density functional theory at the B3LYP hybrid functional level applied to periodic models have been performed to characterize the structural and electronic properties of PbTiO3. Two different slab terminations (PbO and TiO2) have been considered to obtain and discuss the results of band structure, density of states, charge distribution on bulk and surface relaxation. It is observed that the relaxation processes are most prominent for the Ti and Pb surface atoms. The electron density maps confirm the partial covalent character of the Ti-O bonds. The calculated optical band gap and other results are in agreement with experimental data.
Resumo:
The experiment introduces the undergraduate students to the crystal field theory. The electronic spectra of the octahedral complexes of [Ni(L)n]2+ (L = H2O, dmso, NH3 and en) obtained in the experiment are used to calculate 10Dq and B parameters. The experiment shows how the parameters can be calculated and correlated with the nature of the ligands and the field intensities produced.
Resumo:
Thin layer chromatography is a quick, inexpensive and effective way of screening mixtures of non-volatile organic compounds and it is highly recommended for analytical studies. Inspection of plates under ultraviolet light for the detection of colourless compounds should be performed before any further chemical methods are applied. Construction of a low-cost UV-viewing cabinet with lamp employing parts easily found on the local market is described.
Resumo:
A microcontrolled, portable and inexpensive photometer is described. It uses six light-emitting diodes (LEDs) as radiation sources and a phototransistor as detector, as well as a microcontroller (PIC - Programmable Controller of Interruption). This device provided total autonomy to the proposed photometer, which was successfully applied to determination of Fe2+ in ferrous syrups and of seven clinical biochemical parameters. As the components are cheap (~U$30.00) and easy to find, the proposed photometer is an economical alternative for routine chemical analyses in small laboratories, for research and teaching. Being portable and microcontrolled, it allows doing field chemical analyses.
Resumo:
A new passive sampling system for monitoring NO2 in air has been developed to measure gas concentrations in indoor and outdoor air. The sampler is inexpensive, and easy to construct and operate. Nitrogen dioxide forms a derivative after reaction with a filter coated with triethanolamine and ethyleneglycol. The nitrogen dioxide derivative is extracted from the filter, and the concentration is determined by colorimetry. To test the sampler for measuring ambient level nitrogen dioxide, measurements were carried out inside homes and in a range of workplace environments.
Resumo:
The modern stopped-flow reaction analyzer has shown high efficiency and flexibility, which provides outstanding sample economy with a dead-time of less than 1 ms. However the cost of the equipment imposes a serious restriction to many Brazilian scientists and teachers. In this work we describe the construction of a low-cost stopped-flow system coupled to a UV-Vis spectrophotometer. The performance of the system was checked by monitoring the kinetics of two reactions: the fading of phenolphthalein in aqueous alkaline solution and the chlorophyll a demetallation in acid medium. The apparatus showed reasonable efficiency with a dead-time of 0.3 to 0.5 s. The very good results obtained in these two illustrative processes show that the system is satisfactory for determining rate constants with mean reaction times ranging from seconds to minutes.